期刊文献+

连续时间马尔可夫链在寿险精算多状态模型中的应用 被引量:6

Applications of Continuous Time Markov Chains in Multiple States Models in Life Contingencies
原文传递
导出
摘要 在寿险中,多状态模型是传统的两状态模型的推广。多状态模型包括失能、退保等其他状态。在本文中我们将马尔可夫链应用于多状态模型的研究,多元风险模型、多元生命模型都可以视为特殊的多状态模型,从而可以进行统一化处理。相对于传统寿险精算理论中对多元风险模型、多元生命模型和多状态模型分别讨论,本文的统一化处理是很大的改进。本文给出了两个多状态模型的实际应用的例子,对相应的Thiele微分方程组,通过编程求得数值解。 In life insurance, multiple state models are extensions of the traditional two state models. Multiple state models also include many other states such as disabled, withdrawal and others. In this paper we apply Markov chains to the study of multiple state models. Because multiple decrement models and multiple life models can be treated as special multiple state models, they can be processed in a unified way. The unified processing in this paper is a great improvement to tradi- tional life contingency theory which discusses multiple decrement models, multiple life models and multiple state models separately. Two illustrative practical examples are provided in this paper. The numerical conclusion can be obtained by solving certhin Thiele's differential equations numerically, and the numerical solutions of Thiele's equations can be obtained by programming.
作者 张连增 杨婧
出处 《数量经济技术经济研究》 CSSCI 北大核心 2014年第2期113-124,共12页 Journal of Quantitative & Technological Economics
基金 国家自然科学基金面上项目(71271121) 中央高校基本科研业务费专项资金(NKZXTD1101)的资助
关键词 马尔可夫链 多状态模型 净保费 寿险准备金 Thiele微分方程 Markov Chains Multiple State Models Net Premium Life Insurance Reserves Thiele's Differential Equations
  • 相关文献

参考文献4

二级参考文献21

  • 1刘乐平,袁卫.现代贝叶斯分析与现代统计推断[J].经济理论与经济管理,2004,24(6):64-69. 被引量:49
  • 2Per Kragh. Anderson, Niels Keiding. Multi-state models for event history analysis. Statistical Methods in Medical Research, 2002, 11 : 91-115. 被引量:1
  • 3Commenges D. Multi-state models in epidemiology. Life Time Data Analysis, 1999, 5 : 315-327. 被引量:1
  • 4Philip Hougaard. Multi-state models: A review. Life Time Data Analysis, 1999, 5 : 239-264. 被引量:1
  • 5Temkin NP. An analysis for transient states with application to tumor shrinkage. Biometrics, 1978, 34 : 571-580. 被引量:1
  • 6Keiding N, Anderson PK. Nonparametric estimation of transition intensities and transition probabilities: A case study of a two-state Markovprocess. Applied Statistics, 1989, 38 : 319-329. 被引量:1
  • 7Aalen OO, et al. Covariate adjustment of event histories estimated from Markov chains: The additive approach. Biometrics, 2001,57 : 993 - 1001. 被引量:1
  • 8Anderson PK, et al. Non- and semi-parametric estimation of transition probabilities from censored observation of a non-homogeneous Markov proeeas. Seand J. Statist, 1991, 18:153-167. 被引量:1
  • 9Ornulf Borgan Estimation of covariate-dependent Markov transition probabilities from nested case-control data. Statistical Methods in Medical Research, 2002, 11 : 186-202. 被引量:1
  • 10Commenges D. Inference for multi-state models from interval-censored data. Statistical Methods in Medical Research, 2002, 11 : 167-182. 被引量:1

共引文献16

同被引文献46

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部