期刊文献+

基于小波和改进S变换的电能质量扰动分类 被引量:4

Classification of power quality disturbance based on wavelet and improved S-transform
下载PDF
导出
摘要 针对电能质量分析中的电能质量扰动信号快速精确检测及分类重要内容,提出基于小波变换结合改进S变换的电能质量扰动分类方法.通过小波变换得到高低频分量,并选取低频分量做改进的S变换提取特征向量,既保持原信号特征,且得到的S变换模矩阵维数只有原信号直接做S变换的模矩阵维数的1/4.通过概率神经网络(probabilistic neural network,PNN)对信号进行分类.仿真结果证明,所提方法有效,能很好实现分类,且减少分类时间. Rapid and accurate detection and classification of power quality disturbance signals are particularly important in power system. This paper proposes a new classification method based on wavelet transform combined with improved S-transform (IST). The high and low frequency components were obtained by wavelet transform first, and then the low frequency component was selected to extract the feature vectors through IST. In this way, the characteristics of the original signal are retained, and the size of modulus matrix of this low frequency component after IST is only a quarter of that of the original signal after direct IST. Finally the probabilistic neural network (PNN) was employed to classify the signals. Simulation results show that the proposed method reduces greatly the time of classification, it is fast and effective.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2014年第1期23-29,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(51177102) 深圳市基础研究计划资助项目(JCYJ20120613113140920)~~
关键词 电力系统 电能质量 小波变换 改进的S变换 概率神经网络 扰动分类 信号分析 power system power quality wavelet transform improved S-transform probabilistic neural network disturbance classification signal analysis
  • 相关文献

参考文献13

二级参考文献92

共引文献407

同被引文献37

  • 1王金玉,侯士波,林雨晴.基于HHT的暂态电能质量扰动信号检测的研究[J].自动化与仪器仪表,2016(7):12-14. 被引量:6
  • 2Ding Ning,Cai Wei,Suo Juan,et al.Voltage sag disturbance detection based on RMS voltage method[C]// Power and Energy Engineering Conference.Wuhan:IEEE,2009:1-4. 被引量:1
  • 3Singh S K,Goswami A K,Sinha N.Power system harmonic parameter estimation using bilinear recursive least square (BRLS) algorithm[J].International Journal of Electrical Power and Energy Systems,2015,67:1-10. 被引量:1
  • 4Routray A,Pradhan A K,Rao K P.A novel Kalman filter for frequency estimation of distorted signals in power systems[J].IEEE Transactions on Instrumentation and Measurement,2002,51(3):469-479. 被引量:1
  • 5Reza M S,Ciobotaru M,Agelidis V G,et al.Instantaneous power quality analysis using frequency adaptive Kalman filter technique[C]// The 7th International Power Electronics and Motion Control Conference.Harbin,China:IEEE,2012:81-87. 被引量:1
  • 6Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422. 被引量:1
  • 7López R A,Yuz J I,Creixell W U,et al.Recursive parameter and state estimation for a mining industry process[C]// The 20th Mediterranean Conference on Control & Automation (MED).Barcelona,Spain:IEEE,2012:30-35. 被引量:1
  • 8Ray P K,Subudhi B.Ensemble Kalman filter based power system harmonic estimation[J].IEEE Transactions on instrumentation and measurement,2012,61(12):3216-3124. 被引量:1
  • 9Tian Lei,Rong Jian,Zhong Xiaochun,et al.UPF algorithm and its application in the GPS/INS integrated navigation[C]// International Conference on Wireless Communications and Signal Processing.Nanjing,China:IEEE,2009:1-4. 被引量:1
  • 10Huang S J,Hsieh C T.High-impedance fault detection utilizing a morlet wavelet transform approach. IEEE Transactions on Power Delivery . 1999 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部