期刊文献+

盲分离中LMS和RLS两种算法的比较

Comparison of the LMS and RLS Algorithms for Blind Source Separation
下载PDF
导出
摘要 盲源分离试图从给定的一组混合观察数据中恢复未知的独立信源。本文简要阐述LMS和RLS两种自适应算法,用Matlab对一组混合通信信号进行分离实验,考察算法的特性和效果,并进行比较分析。结果表明:LMS算法与RLS算法相比,RLS算法的收敛性能更好一些,而在RLS算法中,自然梯度RLS法又是最优的。 Blind source separation attempts to recover unknown independent sources from a given set of observed mixtures. The two adaptive algorithms -LMS and RLS are introduced in this paper. The separation simulation of a set of mixed communication signals is constructed using Matlab. The characteristics and effects of the two algorithms are also observed. Through the comparison of them, the result shows that the RLS algorithm has better convergence than the LMS algorithm and the natural gradient al- gorithm is the best in the RLS algorithm.
作者 许鹏飞
出处 《电脑与电信》 2013年第12期40-42,共3页 Computer & Telecommunication
关键词 盲信号分离 自适应算法 LMS EASI RLS blind signal separation adaptive algorithm: LMS EASI RLS
  • 相关文献

参考文献8

  • 1Herault J,Jutten C. Space or time adaptive signal processing by neural network models[A].New York:American Institute of Physics,1986. 被引量:1
  • 2Yang H H,Amari S. Adaptive On-line Learning Algorithm for Blind Separation:Maximum Entropy and Minimum Mutual Information[J].{H}Neural Computation,1997,(05):1457-1482. 被引量:1
  • 3Cardoso J F,Laheld B. Equivariant adaptive source separation[J].{H}IEEE Transactions on Signal Processing,1996,(12):3017-3029. 被引量:1
  • 4Pajunen P,Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA[J].Int J of Neural Systems,1998.601-612. 被引量:1
  • 5Xiao-Long Zhu,Xian-Da Zhang. Adaptive RLS Algorithm for Blind Source Separation Using a Natural Gradient[J].IEEE Signal Process-ing Letters,2002,(12). 被引量:1
  • 6Cichocki A;Unbehauen R;Moszczynski L.A new online adap-tive learning algorithm for blind separation of source signals[A]{H}台湾,1994406-411. 被引量:1
  • 7Amari S,Cichocki A,Yang H H. A new learning algorithm for blind signal separation[A].Cambridge,1996.757-763. 被引量:1
  • 8Amari S. Natural gradient works efficiently in learning[J].{H}Neural Computation,1998.251-276. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部