期刊文献+

负向4位势Ablowitz-Ladik等谱方程的双Casoratian解(英文) 被引量:1

Double Casoratian solutions of a negative order four-potential isospectral Ablowitz-Ladik equation
下载PDF
导出
摘要 借助Wronskian技巧得到负向4位势Ablowitz-Ladik等谱方程的双Casoratian解,并给出了一些双Casorati行列式解的具体表达式.进一步地,通过构造双Casorati行列式元素的矩阵方法推导出该方程的广义双Casoratian解. The double Casoratian solutions of a negative order four-potential isospectral Ablowitz-Ladik equation are obtained through the Wronskian technique. Some solutions in double Casorati determinant Form are presented explic- itly as examples. Furthermore, the generalized double Casoratian solution is found via a matrix method for construc- ting double Casoratian entries.
作者 陈守婷 李琪
出处 《江苏师范大学学报(自然科学版)》 2013年第4期11-17,共7页 Journal of Jiangsu Normal University:Natural Science Edition
基金 Research supported by the National Natural Science Foundation of China(11301454,11271168) the Natural Science Foundation for Colleges and Universities in Jiangsu Province(13KJD110009)
关键词 负向4位势Ablowitz—Ladik等谱方程 WRONSKIAN技巧 双Casorati行列式 negative order four-potential isospectral Ablowitz-Ladik equation Wronskian technique double Casoratideterminant
  • 相关文献

参考文献23

  • 1Nimmo J J C,Freeman N C. A bilinear B?cklund transformation for the nonlinear Schr?dinger equation[J].{H}Physics Letters A,1983,(6/7):279. 被引量:1
  • 2Ablowitz M J,Segur H. Solitons and the inverse scattering transform[M].Philadelphia:SIAM,1981. 被引量:1
  • 3Matveev V B,Salle M A. Darboux transformations and solitons[M].{H}Berlin:Springer-Verlag,1991. 被引量:1
  • 4Hirota R. Exact solution of the KdV equation for multiple collisions of solitons[J].{H}Physical Review Letters,1971,(18):1192. 被引量:1
  • 5Hirota R. The direct method in soliton theory[M].{H}Cambridge:Cambridge University Press,2004. 被引量:1
  • 6Freeman N C,Nimmo J J C. Soliton solutions of the KdV and KP equations:the Wronskian technique[J].{H}Physics Letters A,1983,(01):1. 被引量:1
  • 7Nimmo J J C,Freeman N C. The use of B?cklund transformations in obtaining N soliton solutions in Wronskian form[J].{H}Journal of Physics A:Mathematical and General,1984,(07):1415. 被引量:1
  • 8Darboux G. Lecons surla théorie générale des surfaces:Vol Ⅱ[M].New York:Chelsea publishing company,1972. 被引量:1
  • 9Liu Qiming. Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies[J].{H}Journal of The Physical Society of Japan,1990,(10):3520. 被引量:1
  • 10Chen Dengyuan,Zhang Dajun,Bi Jinbo. New double Wronskian solutions of the AKNS equation[J].{H}SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY,2008,(01):55. 被引量:1

同被引文献18

  • 1CHEN DenYuan,ZHANG DaJun,BI JinBo.New double Wronskian solutions of the AKNS equation[J].Science China Mathematics,2008,51(1):55-69. 被引量:8
  • 2YUQIN YAO,DAJUN ZHANG,DENGYUAN CHEN.THE DOUBLE WRONSKIAN SOLUTIONS TO THE KADOMTSET–PETVIASHVILI EQUATION. Modern Physics Letters A . 2008 被引量:1
  • 3Da‐JunZhang,Shou‐TingChen.??Symmetries for the Ablowitz–Ladik Hierarchy: Part I. Four‐Potential Case(J)Studies in Applied Mathematics . 2010 (4) 被引量:1
  • 4J. J. C. Nimmo and N. C. Freeman.A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian. Physics Letters . 1983 被引量:1
  • 5Hirota R,Ito M,Kako F.Two-dimensional Toda lattice equations. Progress of Theoretical Physics Supplement . 1988 被引量:1
  • 6Liu Q M.Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies. Journal of the Physical Society of Japan . 1990 被引量:1
  • 7Gegenhasi,Hu, Xing-Biao,Levi, Decio.On a discrete Davey-Stewartson system. Inverse Problems . 2006 被引量:1
  • 8Wen Zhai,Deng-yuan Chen.??Rational solutions of the general nonlinear Schr?dinger equation with derivative(J)Physics Letters A . 2008 (23) 被引量:1
  • 9J.J.C. Nimmo.A bilinear B?cklund transformation for the nonlinear Schr?dinger equation. Physics Letters . 1983 被引量:1
  • 10Satsuma J.A Wronskian representation of N-soliton solutions of nonlinear evolution equations. Journal of the Physical Society of Japan . 1979 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部