期刊文献+

使用网格索引的分布式数据流上K-Skyband连续查询算法 被引量:2

Grid Index Based Continuous K-Skyband Query Algorithm over Distributed Data Streams
下载PDF
导出
摘要 K-Skyband查询是Skyline查询的扩展,能够返回那些自身具有潜在价值但被Skyline查询遗漏的点,在偏好搜索和多目标决策支持领域均有重要作用.此前关于K-Skyband查询的研究局限于集中式数据集,然而,分布式数据流上K-Skyband连续查询问题更有现实意义,它可以应用到诸如自然灾害预测和网络安全检测等方面.为了有效解决上述问题,提出了通过传送站点本地K-Skyband增量来减少站点间通信开销的算法GBIFA.此外,为了降低GBIFA算法的时间开销,采用规则的网格索引组织数据,并利用支配区域划分方法来避免更新维护时数据点间大量的支配测试.实验表明GBIFA算法在减少通信开销和查询时间上的有效性. K-Skyband query is an extension of Skyline query,it plays an important role in preference query and multi-criteria decision making because it can find those points which are potentially valuable but omitted by Skyline. Previous research on the K-Skyband query is limited to centralized data set, however, continuous K-Skyband monitoring over Distributed Data Streams has more practical significance, such as natural disasters prediction and network security monitoring. In order to solve the problem proposed effectively, a novel algorithm GBIFA based on delivering the incremental K-Skyband is developed to reduce the communication overhead between sites. Furthermore, a regular grid index is used to organize the data to accelerate the server processing time by taking advantage of dominating region partition which will contribute to avoiding dominating tests during update maintenance. Extensive experiments prove the validity of GBIFA.
作者 詹彦溥 赵雷
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第2期233-238,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61073061)资助
关键词 分布式数据流 SKYLINE K-Skyband 连续查询 通信开销 distributed data streams skyline K-Skyband continuous query communication overhead
  • 相关文献

参考文献1

二级参考文献17

  • 1Borzsonyi S,Kossmann D,Stocker K.The Skyline operator.In:Proc.of the 17th Int'l Conf.on Data Engineering.Heidelberg:IEEE Computer Society,2001.421-430.http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2001.html. 被引量:1
  • 2Papadias D,Tao YF,Fu G,Seeger B.Progressive Skyline computation in database systems.ACM Trans.on Database Systems,2005,30(1):41-82.[doi:10.1145/1061318.1061320]. 被引量:1
  • 3Hjaltason GR,Samet H.Distance browsing in spatial databases.ACM Trans.on Database Systems,1999,24(2):265-318.[doi:10.1145/320248.320255]. 被引量:1
  • 4Buchta C.On the average number of maxima in a set of vectors.Information Processing Letters,1989,33(2):63-65.[doi:10.1016/ 0020-0190(89)90156-7]. 被引量:1
  • 5Markl V,Megiddo N,Kutsch M,Tran TM,Haas PJ,Srivastava U.Consistently estimating the selectivity of conjuncts of predicates.In:Proc.of the 31st Int'l Conf.on Very Large Data Bases.Trondheim:ACM,2005.373-384. 被引量:1
  • 6Rosen KH.Discrete Mathematics and Its Applications.5th ed.,Boston:McGraw-Hill,2002. 被引量:1
  • 7Chomicki J,Godfrey P,Gryz J,Liang D.Skyline with presorting.In:Dayal U,Ramamritham K,Vijayaraman TM,eds.Proc.of the 19th Int'l Conf.on Data Engineering.Bangalore:IEEE Computer Society,2003.717-816. 被引量:1
  • 8Godfrey P,Shipley R,Gryz J.Maximal vector computation in large data sets.In:B(o)hm K,Jensen CS,Haas LM,Kersten ML,Larson P,Ooi BC,eds.Proc.of the 31st Int'l Conf.on Very Large Data Bases.Trondheim:ACM,2005.229-240. 被引量:1
  • 9Godfrey P,Shipley R,Gryz J.Algorithms and analyses for maximal vector computation.The VLDB Journal,2007,16(1):5-28. 被引量:1
  • 10Tan KL,Eng PK,Ooi BC.Efficient progressive Skyline computation.In:Proc.of the 27th Int'l Conf.on Very Large Data Bases.Roma:Morgan Kaufmann Publishers,2001.301-310. 被引量:1

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部