期刊文献+

抽象凸空间上的拟变分不等式及其应用 被引量:3

Quasi-variational Inequality for Abstract Convex Spaces with an Application
原文传递
导出
摘要 为了得到不具线性结构的抽象凸空间上的非连续泛函的拟变分不等式解的存在性,首先,利用抽象凸空间上的KKM定理得到抽象凸空间上的弱Ky Fan不等式解的存在性,进而得到弱拟变分不等式和拟变分不等式解的存在性,作为推论,得到抽象凸空间上的Fan-GlicksbergKakutani不动点定理、Kakutani不动点定理和Tycholoff不动点定理.最后,作为应用给出了抽象凸策略空间上的n人非合作广义博弈Nash平衡点的存在性. In order to derive the existence of solution of quasi-variational inequality for functions with no continuity defined on abstract convex spaces with no linear structure. Firstly, by using KKM theorem in abstract convex space, the existence of solutions of Ky Fan inequality is proved. By the way, the existence of solutions of weakly quasi-variational inequality and quasi-variational inequality is derived. Furthermore, the Fan-Glicksberg- Kakutani fixed point theory, Kakutani fixed point theory and Tycholoff fixed point theory in abstract convex space, as corollaries, are derived. As an application, the existence of Nash equilibrium for n-person non-cooperative generalised game on abstract convex strategy spaces is established.
作者 夏顺友
出处 《应用数学学报》 CSCD 北大核心 2014年第1期78-86,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11161008) 贵州省科学技术基金(2012GZ71164)资助项目
关键词 抽象凸空间 拟变分不等式 不动点定理 凡人非合作广义博弈 NASH平衡 abstract convex space quasi-variational inequality fixed point theorem n-person non-cooperative generalised game Nash equilibrium
  • 相关文献

参考文献20

  • 1Fan Ky. A Minmax Inequality and Its Applications[A].New York:Academic Press,Inc,1972. 被引量:1
  • 2Tan K K,Yu J,Yuan X Z. The Stability of Ky Fan's Points[J].Proceedings of the American Mathematical Society,1995.1511-1519. 被引量:1
  • 3Bensoussan A,Lions J L. Controle Impulsionnel et Inequations Quisi-variationelles Stationaires[J].Comptes rendus de l'Académie des sciences,1973.1279-1284. 被引量:1
  • 4Bensoussan A,Lions J L. Nouvelle Formulation de Problems Decontrole Impulsionnel et Applications[J].Comptes rendus de l'Académie des sciences,1973.1189-1192. 被引量:1
  • 5Aubin J P,Ekeland I. Applied Nonlinear Analysis[M].New York:Wiley-Interscience,1984. 被引量:1
  • 6Xiang S W,Yang H. Some Properties of Abstract Convexity Structures on Topological Spaces[J].Nonlinear Analysis: Theory, Methods & Applications,2007.803-808. 被引量:1
  • 7Xiang S W,Xia S Y. A Further Characteristic of Abstract Convexity Structures on Topological Spaces[J].Journal of Mathematical Analysis and Applications,2007.716-723. 被引量:1
  • 8Horvath C D,Llinares Ciscar J V. Minimal Elements and Fixed Point for Binary Relations on Topological Ordered Spaces[J].Mathematical Economics,1996.291-306. 被引量:1
  • 9Horvath C D. Some Results on Multi-valued Mappings and Inequalities without Convexity[A].Marcel Dekker,Inc,1987.99-106. 被引量:1
  • 10Suo H M. Some Properties of B-convexity[J].Journal of Nonlinear Science and Applications,2009.1-7. 被引量:1

二级参考文献41

  • 1俞建.对策论中的本质平衡[J].应用数学学报,1993,16(2):153-157. 被引量:19
  • 2中国科学院数学研究所.对策论讲义[M].北京:人民教育出版社,1960.. 被引量:1
  • 3Tan K K, Yu J, Yuan X Z. The Stability of Ky Fan's Points. Proc. Amer. Math. Soc., 1995, 123: 1511-1519 被引量:1
  • 4Fan K. A Minimax Inequality and Applications. In: Shisha O (Ed.), Inequality Ⅲ. New York: Academic Press, 1972, 103-113 被引量:1
  • 5Aubin J P, Frankowska H. Set-valued Analysis. Boston: Birkhauser, 1990 被引量:1
  • 6Yu J, Xiang S W. On Essential Components of the Set of Nash Equilibrium Points. Nonlinear Analysis TMA, 1999, 38:259-264 被引量:1
  • 7Kohlberg E, Mertens J F. On the Strategic Stability of Equilibria. Econometrica, 1986, 54:1003-1037 被引量:1
  • 8William R J. Sufficient Conditions for Nash Equilibria in N-Person Games over Relfexive Banach Spaces. J. Opt. Theory Appl., 1980, 30:383-394 被引量:1
  • 9Yu J. On Nash Equilibria in N-Person Games over Relfexive Banach Spaces. J. Opt. Theory Appl., 1992, 73:211-214 被引量:1
  • 10Han J, Huang Z H, Fang S C. Solvability of Variational Inequality Problems. J. Opt. Theory Appl., 2004, 122:501-520 被引量:1

共引文献74

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部