期刊文献+

用于MIMO-OFDM系统盲信道估计的子空间法 被引量:2

Subspace approach to blind channel estimation of MIMO-OFDM system
下载PDF
导出
摘要 为了克服传统的子空间算法需要大量接收符号计算自相关矩阵、收敛速度慢等缺点,本文提出了一种新的快速收敛的基于子空间的盲信道估计算法。采用块矩阵方案,对信道矩阵进行分块处理,形成分块的Toeplitz矩阵,在不改变分块Toeplitz矩阵的情况下,可从堆栈的OFDM信号中形成大量的子向量,因此通过较小的接收符号就可以准确的估计接收信号的自相关矩阵。该算法继承了传统子空间算法估计准确度高、计算复杂度低等优点,又降低对信道时不变的要求,加快了算法的收敛速度。理论分析与仿真结果表明了本文方法的有效性和较好的误比特率性能。 In order to overcome the shortcomings of traditional subspace algorithm that required lots of receiving symbols to compute the autoeorrelation matrix and had slow convergence and so on, this paper presented a new fast convergence of subspace-based blind channel estimation algorithm for the Multi-Input Multi-Output Orthogonal Frequency Division Muhi- plexing (MIMO-OFDM) wireless communication system. Through the block matrix scheme, the channel matrix was turned to be block Toeplitz matrix. Without changing the block Toeplitz matrices, a large number of sub-vectors were formed from the stacked OFDM signal. By using the sub-vector samples, an accurate estimation of auto-eorre|ation matrix could be ob- tained with fewer received block. The proposed method had the advantages of high estimation accuracy and low computa- tional complexity inherited from traditional subspace algorithm, but also relaxed the channel time-invariant requirement and accelerated the convergence speed. Theoretical analysis and simulation results show the effectiveness and better bit error rate performance of the proposed method.
出处 《信号处理》 CSCD 北大核心 2014年第1期51-57,共7页 Journal of Signal Processing
基金 国家自然科学基金项目(61072046)
关键词 正交频分复用 多输入多输出 子空间方法 盲信道估计 OFDM MIMO Subspace method Blind channel estimation
  • 相关文献

参考文献12

  • 1E Telatar. Capacity of Multi-antenna Gaussian Channels[J].European Transactions on Telecommunication,1999,(06):585-596. 被引量:1
  • 2X.Ma,L.Yang,G.B.Giannakis. Optimal training for MIMO frequency-selective fading channels[J].IEEE Trans Wireless Commun,2005,(02):453-466. 被引量:1
  • 3Li Juan,Wang Ke,Li Li. Blind Channel Estimation Based on Optimal Window Function and HOS for MIMO System[A].2009.346-350. 被引量:1
  • 4Bertrand Muquet,Marc de Courville,Pierre Duhnmel. Subspace-based blind and semi-blind channel estimation for OFDM systems[J].{H}IEEE Transactions on Signal Processing,2002,(07):1699-1712. 被引量:1
  • 5C.Shin,R.W.Heath,E.J.Power. Blind channel estimation for MIMO-OFDM systems[J].{H}IEEE Transactions on Vehicular Technology,2007,(02):670-680. 被引量:1
  • 6B.Su,P.P.Vaidyanthan. On the Persistency of Excitation for Blind Channel Estimation in Cyclic Prefix Systems[A].2007.1899-1902. 被引量:1
  • 7B.Su,P.P.Vaidyanthan. Subspace-based blind channel identification for cyclic prefix systems using few received blocks[J].{H}IEEE Transactions on Signal Processing,2007,(10):4979-4993. 被引量:1
  • 8J.L.Yu,Y.C.Lin. Space-time coded MIMO ZPOFDM systems:Semiblind channel estimation and equalization[J].{H}IEEE Transactions on Circuits and Systems,2009,(07):1360-1372. 被引量:1
  • 9Jin-Goog Kim,Jun-Han Oh,Jong-Tae Lim. Subspace-based channel estimation for MIMO-OFDM systems with few received blocks[J].{H}IEEE Signal Processing Letters,2012,(07):435-438. 被引量:1
  • 10Chao-Cheng Tu,Benoit Champagne. Subspace-based blind channel estimation for MIMO-OFDM systems with reduced time averaging[J].{H}IEEE Transactions on Vehicular Technology,2010.1539-1544. 被引量:1

同被引文献20

  • 1Islam K M Z,A1-Naffouri T Y,A1 Dhahir N. On Optimum Pilot Design for Comb-Type OFDM Transmission over Dou- bly-Selective Channels [J]. IEEE Trans on Communica- tions, 2011,59 (4): 930-935. 被引量:1
  • 2Khojastepour M A,Gomadam K,Wang X D. Pilot-assisted Channel Estimation for MIMO-OFDM Systems Using Theo- ry of Sparse Signal Recovery [C]//IEEE International Con- ference on Acoustics, Speech and Signal Processing, 2009: 2693-2696. 被引量:1
  • 3Li C, Roy S. Subspace-based blind channel estimation for OFDM by exploiting virtual carriers [ J ]. IEEE Trans Wireless Commun,2003, 2( 1 ) : 141-150. 被引量:1
  • 4Shin C, Heath R W, Power E J. Blind channel estima- tion for MIMO-OFDM systems [ Jl. IEEE Trans. Veh. Technol,Mar. 2007, 56(2) :670-680. 被引量:1
  • 5Kim J G, Oh J H, Lim J T. Subspace-Based Channel Es- timation for MIMO-OFDM Systems With Few ReceivedBlocks[ Jl. IEEE Signal Processing Letters, 2012, 19 (7) :435-438. 被引量:1
  • 6Fang S H, Chen J Y, Shieh M D, et al. Modified Sub- space Based Channel Estimation Algorithm for OFDM Systems [ C ]//Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th. IEEE, 2009 : 1-5. 被引量:1
  • 7Fang S H, Chen J Y, Lin J S, et al. Blind channel esti- mation for MIMO-OFDM systems with repeated time-do- main symbols[ C ]// Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on. IEEE, 2012: 37-40. 被引量:1
  • 8Tu C C, Champagne B. Subspace-Based Blind Channel Estimation for MIMO-OFDM Systems With Reduced Time Averaging[ J]. IEEE Transactions on Vehicular Technol- ogy, 2010, 59(3):1539-1544. 被引量:1
  • 9Lin N, Sun H, Cheng E, et al. Prediction based sparsechannel estimation for underwater acoustic OFDM [ J ]. Applied Acoustics, 2015:94-100. 被引量:1
  • 10Jacobsson S, Durisi G, Coldrey M, et al. One-Bit Mas- sive MIMO: Channel Estimation and High-Order Modula- tions[ J]. Proc IEEE International Conference on Com- munications, 2015. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部