期刊文献+

一种改进的粒子滤波和Mean Shift联合跟踪算法 被引量:2

An Improved Tracking Algorithm Based on Particle Filter and Mean Shift
下载PDF
导出
摘要 为了提高视频运动目标跟踪的准确性和实时性,提出一种改进的粒子滤波和Mean Shift联合跟踪算法。针对传统粒子滤波跟踪算法中颜色直方图观测模型存在的局限性,提出了一种基于分块颜色直方图的观测模型描述方法,并根据该分块直方图的特点,重新设计了粒子权值的更新策略;针对粒子滤波算法实时性差的问题,提出了一种基于积分直方图的颜色特征快速计算方法,极大地降低了算法的运算量;为了降低相似背景干扰对跟踪效果的影响,提出了一种基于Gabor幅度谱的Mean Shift跟踪算法,并利用改进的Mean Shift算法对粒子滤波跟踪结果进行优化,提高了跟踪算法在复杂背景下的搜索能力。实验结果表明了算法的有效性。 To improve the accuracy of video target tracking, a novel joint tracking algorithm using particle filter and mean shift is proposed. Aiming at the shortcomings of color histogram-based observation model in traditional particle filter, a sub-block histogram-based observation model is built. Also based on the new model, weight calculation in particle filter is redesigned. To overcome the bad real-time performance of traditional particle filter, a fast color feature extraction method based on integral histogram is proposed. Furthermore, a Gabor-wavelet-based Mean Shift algorithm which can reduce the interference of similar background is presented, and the improved Mean Shift method is used to optimize the estimated results obtained by particle filtering. Experimental results show that the proposed algorithm is of effectiveness.
出处 《中国电子科学研究院学报》 2013年第6期599-604,共6页 Journal of China Academy of Electronics and Information Technology
基金 北京理工大学基础研究基金(20120542017)
关键词 视频目标跟踪 粒子滤波 分块直方图 积分直方图 Mean SHIFT GABOR小波 video target tracking particle filter sub-block histogram integral histogram Mean Shift Gahor wavelet
  • 相关文献

参考文献9

  • 1DOUCET A,GORDON N J. Sequential Monte Carlo Methods in Practice[M].{H}New York:Springer-Verlag,2001. 被引量:1
  • 2LIU J S,CHEN R. Sequential Monte Carlo Methods for Dynamic Systems[J].{H}Journal of the American Statistical Association,1998,(443):1032-1044. 被引量:1
  • 3TANG DA,ZHANG YU-JIN. Combining Mean-Shift and Particle Filter for Object Tracking[A].2011.771-776. 被引量:1
  • 4覃剑..视频序列中的运动目标检测与跟踪研究[D].重庆大学,2008:
  • 5SHAN CAI-FENG,TAN TIE-NIU,WEI YU-CHENG. Real-Time Hand Tracking Using a Mean-Shift Embedded Particle Filter[J].{H}Pattern Recognition,2007,(07):175-197. 被引量:1
  • 6DEGUCHI K,KAWANAKA O,OKATANI T. Object Tracking by the Mean-Shift of Regional Color Distribution Combined with the Particle-Filter Algorithms[A].2004.506-509. 被引量:1
  • 7ADAM A. Robust Fragments-Based Tracking Using the Integral Histogram[A].2006.798-805. 被引量:1
  • 8CLAUSI D A,HUANG D. Design-Based Texture Feature Fusion Using Gabor Filters and Co-Occurrence Probabilities[J].{H}IEEE Transactions on Image Processing,2005,(07):925-936.doi:10.1109/TIP.2005.849319. 被引量:1
  • 9彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165

二级参考文献10

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857. 被引量:1
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245. 被引量:1
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533. 被引量:1

共引文献164

同被引文献12

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部