期刊文献+

基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计 被引量:81

States Estimation of Li-ion Power Batteries Based on Adaptive Unscented Kalman Filters
下载PDF
导出
摘要 应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。 When using the traditional unscented Kalman filter (UKF) to estimate the electric vehicle li-ion power battery state of charge (SOC), the inaccurate battery model often causes estimation error to increase. Adaptive unscented Kalman filter (AUKF) was used to solve this problem in this paper. AUKF is a kind of cyclic iterative algorithm, and using it can estimate the inner ohmic resistance of the battery model in real time. Therefore, it improves the accuracy of the battery model, and thus further improves the accuracy of battery SOC estimation. In addition, the battery state of health (SOH) also can be estimated because the inner ohmic resistance of the battery can characterize the battery SOH. The battery charged and discharged experiments were done under setting conditions and the experimental analysis showes that AUKF improves the estimation accuracy of battery SOC compared with UKF, and AUKF can accurately estimate the inner ohmic resistance of the battery.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第3期445-452,共8页 Proceedings of the CSEE
基金 国家高技术研究发展计划项目(863计划)(2011AA11A279)~~
关键词 荷电状态 健康状态 自适应无迹卡尔曼滤波器 电动汽车 锂离子动力电池 state of charge state of health adaptiveunscented Kalman filter electric vehicle li-ion power battery
  • 相关文献

参考文献22

  • 1Plett G L. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs part 1 background[J].{H}Journal of Power Sources,2004,(134):252-261. 被引量:1
  • 2Meissner E,Richter G. The challenge to the automotive battery industry:the battery has to become an increasingly integrated component within the vehicle electric power system[J].{H}Journal of Power Sources,2005,(02):438-460. 被引量:1
  • 3Ng K S,Moo C S,Chen Y P. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J].{H}Applied Energy,2009,(09):1506-1511. 被引量:1
  • 4Remmlinger J,Buchholz M,Meiler M. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J].{H}Journal of Power Sources,2001,(12):5357-5363. 被引量:1
  • 5Aylor J H,Thieme A,Johnson B W. A battery state of charge indicator for electric wheelchairs[J].{H}IEEE Transactions on Industrial Electronics,1992,(05):398-409. 被引量:1
  • 6雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的支持向量机方法[J].中国电机工程学报,2008,28(18):114-118. 被引量:28
  • 7雷肖,陈清泉,刘开培,马历.电动车电池SOC估计的径向基函数神经网络方法[J].电工技术学报,2008,23(5):81-87. 被引量:58
  • 8裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 9Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 2 modeling and identification[J].{H}Journal of Power Sources,2004,(134):262-276. 被引量:1
  • 10Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs part 3 state and parameter estimation[J].{H}Journal of Power Sources,2004,(134):277-292. 被引量:1

二级参考文献50

共引文献157

同被引文献738

引证文献81

二级引证文献656

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部