摘要
通过对砂岩储集层内矿物蚀变化学反应平衡量的核定,确定砂岩主要耗水作用,在此基础上,分析主耗水作用发生条件及其与生油窗的对应性,研究耗水反应的油气地质意义。砂岩埋藏过程中,长石高岭石化耗水作用在各类矿物转化总耗水效应中占主导地位,与含油气盆地烃源岩生油窗对应,烃源岩生烃排出的含烃酸性流体促使长石向高岭石转化。耗水对油气成藏的作用必须在封存箱内进行,封存箱内砂体的成岩耗水反应使其内部压力降低、储集空间增大,同时烃源岩生烃增压,源储间形成巨大的压力差,油气因"压-吸"作用充注砂体而成藏。长石高岭石化耗水作用在砂体成岩过程中的普遍性决定了"压吸充注"油气成藏方式的重要性。建立在济阳坳陷深部封存箱内砂体成藏机制基础上的"压吸充注"油气成藏模式可用于解释全球范围内同类油藏的成因,从而指导该类油藏勘探。
The dominant water consumption reaction in sandstones was figured out by determining variables in the mineral alteration in sandstone reservoirs, on this basis, the conditions of major water consumption reaction and its correspondence with oil-generating window were analyzed to reveal the petroleum geological significance of water consumption reaction. The kaolinitization of feldspar plays a dominant role in the water consumption reaction during diagenetic stage, which corresponds to the hydrocarbon-generating window, and the acid hydrocarbon-bearing fluid produced by source rocks facilitates the kaolinitization reaction. Water consumption causes the pressure drop and porosity increase in the reservoir formation in the compartment sandstone, at the same time, huge pressure difference between source rocks and reservoirs comes about because strong pressure built up in the source rocks owing to hydrocarbon generation, and the oil and gas are pushed and sucked into the reservoir sands. The universality of the kaolinitization water consumption suggests this "push-suck" mode is very important for reservoir formation. This mode of the Jiyang depression can be used to explain the origin of similar reservoirs across the world, and guide exploration for oil and gas.
出处
《石油勘探与开发》
SCIE
EI
CAS
CSCD
北大核心
2014年第1期37-44,共8页
Petroleum Exploration and Development
基金
中国石化股份有限公司科技攻关项目"东营凹陷地层流体系统演化与油气成藏研究"(P09010)
关键词
长石
高岭石化
砂岩耗水作用
矿物蚀变
封存箱
“压吸充注”成藏模式
济阳坳陷
feldspar
kaolinization
sandstone water consumption
mineral alteration
compartment
pressure-suck filling
Jiyang depression