期刊文献+

基于用户特征分解的协同过滤冷启动解决算法 被引量:2

METHOD TO SOLVE COLD- START PROBLEM IN COLLABORATIVE FILTERING BASED ON USERS' CHARACTERISTIC DECOMPOSITION
下载PDF
导出
摘要 协同过滤中的冷启动问题是个性化推荐系统的一个难点,本文提出了一种基于用户特征分解的解决算法。首先构建了用户表示矩阵同时为保证不同用户评价的可比性,把每个用户的评价向量进行标归一化处理得到标准用户评价矩阵然后将两者进行合成得到用户特征对资源的标准评价矩阵。当新用户表示为用户特征向量,与特征评价矩阵合成得到新用户的预测评价向量,从而进行个性化推荐。基于MovieLens数据集进行的实验表明,该算法可以一定程度上解决系统冷启动问题,提高系统推荐质量。该算法还可以很方便地推广解决新资源的冷启动问题。 Cold -Start Problem in Collaborative Filtering is a difficult problem in personalized recommendation system. The new method is put forward based on users'characteristic decomposition. Firstly, users'characteristic representing matrix is designed, standard users' evaluative matrix is builded by unitary processing, touser, eualluative on parabinty of different usersis promised. Secondly, combination of users' characteristic denotation matrix and standard users' evaluative matrix can calculate standard evaluative matrix of characteristic - resource. New user can be denoted user' evaluative vector, forecasted evaluative matrix of new user can calculate by combining characteristic evaluative matrix and personalized recommendation can carryd out. The experimental results based on MovieLens data set showed that the improved algorithm could solve the Cold -Start Problem, and it can improve the accuracy of system recommendation significantly. The method solves cold - start problem of new resource effectvely.
出处 《山东农业大学学报(自然科学版)》 CSCD 北大核心 2013年第4期616-619,共4页 Journal of Shandong Agricultural University:Natural Science Edition
基金 山东省高等学校科技计划项目(J12LN73) 山东省艺术科学重点课题(2012445)
关键词 用户特征 协同过滤 冷启动 评价矩阵 特征表示矩阵 Users' Characteristic collaborative filtering cold - Start, evaluative matrix characteristic representation matrix
  • 相关文献

参考文献8

  • 1Burke R. Hybrid recommender systems:Survey and experiments[J].{H}User Modeling and User-Adapted Interaction,2002,(04):331-370. 被引量:1
  • 2Cohen W W,Fan W. Web collaborative filtering:Recommending music by crawling the Web[J].{H}Computer Networks,2000,(1-6):685-698. 被引量:1
  • 3Greco G,Greco S,Zumpano E. Collaborative filtering supporting Web site navigation[J].{H}AI COMMUNICATIONS,2004,(03):155-166. 被引量:1
  • 4Vezina R,Militaru D. Collaborative filtering:Theoretical positions and a research agenda in marketing[J].International Journal of TechnologyManagement,2004,(01):31-45. 被引量:1
  • 5孙冬婷,何涛,张福海.推荐系统中的冷启动问题研究综述[J].计算机与现代化,2012(5):59-63. 被引量:38
  • 6罗喜军;王韬丞;杜小勇.基于类别的推荐——一种解决协同推荐中冷启动问题的方法[J]{H}计算机研究与发展,2007(suppl):290-295. 被引量:1
  • 7KARAFYLLIS I. Finite-time global stabilization by means of time-varying distributed delay feedback[J].{H}SIAM Journal on Control and Optimization,2006,(01):320-342.doi:10.1137/040616383. 被引量:1
  • 8孙少华.协同过滤系统的稀疏性与冷启动问题研究[D]{H}杭州:浙江大学,2005. 被引量:1

二级参考文献28

  • 1Mobasher B, Anand S S. Intelligent techniques for Web personalization [ J ]. Lecture Notes in Computer Science, 2005,3169 : 1-36. 被引量:1
  • 2Resnick P, Varian H R. Recommender systems[ J]. Com- munications of the ACM, 1997,40 (3) :56-58. 被引量:1
  • 3Ahn A, Kim J K, Choi I Y, et al. A personalised recom- mendation procedure based on dimensionality reduction and Web mining[ J]. International Journal of Internet & Enter- prise Management, 2004,2 (3) :280-298. 被引量:1
  • 4Basu C, Hirsh H, Cohen W W. Recommendation as classi- fication: Using social and content-based information in rec- ommendation[C]//Proceedings of the Fifteenth National Conference on Artificial Intelligence. 1998:714-720. 被引量:1
  • 5Burke R. Hybrid recommender systems: Survey and exper- iments[ J ]. User Modelling and User-Adapted Interaction, 2002,12(4) :331-370. 被引量:1
  • 6Cohen W W, Fan W. Web collaborative filtering: Recom- mending music by crawling the Web [ J ]. Computer Net- works, 2000,33(1-6) :685-698. 被引量:1
  • 7Greco G, Greco S, Zumpano E. Collaborative filtering sup- porting Web site navigation [ J ]. AI Communications, 2004,17 (3) : 155-166. 被引量:1
  • 8Vezina R, Militaru D. Collaborative filtering: Theoretical positions and a research agenda in marketing[J], Interna- tional Journal of Technology Management, 2004,28 ( 1 ) : 31-45. 被引量:1
  • 9Su X Y, Khoshgoftaar T M. A survey of collaborative filte- ring techniques [ J ]. Advances in Artificial Intelligence, 2009,2009:1-19. 被引量:1
  • 10Breese J, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [ C ]//Pro- ceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52. 被引量:1

共引文献37

同被引文献28

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部