期刊文献+

用于跨/超声速壁板颤振精确分析的流-固耦合有限元算法 被引量:3

A Fluid-Structure Coupling Algorithm Based on Finite Element Method for Precise Analysis of Transonic and Supersonic Panel Flutter
下载PDF
导出
摘要 为了精确和定量分析超声速与跨声速壁板的颤振特性,提出了一种基于有限元方法的流-固耦合算法,并用其研究了二维壁板颤振问题。首先,给出了壁板的von Kármán几何大变形运动方程,以及高速气流的欧拉控制方程。然后,采用标准有限元方法对壁板方程进行空间离散,而对流动控制方程的离散则运用双时间步长推进的特征线分裂有限元方法,从而有效地消除了流场数值解的振荡问题。随后,采取松耦合算法实现了流体与固体间的数据传递。最后,运用所提出的算法对超声速和跨声速气流作用下壁板的气动弹性特性进行了分析,考察了归一化动压、预紧力和厚度比对系统特性的影响,并将该算法的分析结果与采用线性/非线性活塞理论和线性化势流理论的经典壁板颤振结果进行了对比,证明该算法可以在较宽广的马赫数范围内给出气动力的精确描述,尤其适合于分析跨声速气流下的壁板气动弹性响应。 To analyze the supersonic and transonic panel flutter behavior quantitatively and accurately, a fluid-structure coupling algorithm based on the finite element method (FEM) is proposed for the two-dimensional panel flutter problem. First, the von Karman's large deformation theory is adopted to model the panel, and the high speed air flow is approached by the Euler equations. Then, the equation of panel is discretized spatially by the standard FEM, and the equations of fluid are discretized by the characteristic-based split finite element method (CBS-FEM) with dual time stepping, thus the numerical oscillation often encountered in numerical simulation of fluid flow can be eliminated. Furthermore, a loose coupling algorithm is applied to the data exchange between the fluid and the structure. Finally, the proposed algorithm is used to investigate the aeroelastic behavior of the panel in supersonic and transonic air flows and the influences of the non-dimensional dynamic pressure, pre-tightening force and thickness ratio on the system. The results are compared with those of the classical panel flutter analyses using linear/nonlinear piston theory and linearized potential flow theory. It shows that the proposed algorithm enables to obtain accurate aerodynamic pressure in a wide range of Mach numbers, especially for the analysis of panel aeroelasticity in transonic air flows.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第1期73-83,共11页 Journal of Xi'an Jiaotong University
基金 国家"973计划"资助项目(2012CB026002) 国家"863计划"资助项目(2012AA052303)
关键词 壁板颤振 流-固耦合 特征线分裂算法 有限元方法 气动弹性 panel flutter fluid-structure interaction characteristic-based split method finite element method aeroelasticity
  • 相关文献

参考文献21

  • 1梅冠华,张家忠.时滞惯性流形在三维壁板颤振数值分析中的应用[J].西安交通大学学报,2011,45(9):40-46. 被引量:2
  • 2杨智春,夏巍,孙浩.高速飞行器壁板颤振的分析模型和分析方法[J].应用力学学报,2006,23(4):537-542. 被引量:29
  • 3MEI Guanhua,ZHANG Jiazhong,WANG Zhuopu. Numerical analysis of panel flutter on inertial manifolds with delay[J].Journal of Computational and Nonlinear Dynamics,2013,(2):021009.1-021009.11. 被引量:1
  • 4DOWELL E H. Nonlinear oscillations of a fluttering plate[J].{H}AIAA Journal,1966,(7):1267-1275. 被引量:1
  • 5IDOWELL E H. Nonlinear oscillations of a fluttering plate:Ⅱ[J].{H}AIAA Journal,1967,(10):1856-1862. 被引量:1
  • 6DOWELL E H. A review of the aeroelastic stability of plates and shells[J].{H}AIAA Journal,1970,(1):385-399. 被引量:1
  • 7OLSON M D. Finite element approach to panel flutter[J].{H}AIAA Journal,1967,(12):226-227. 被引量:1
  • 8OLSON M D. Some flutter solutions using finite element[J].{H}AIAA Journal,1970,(4):747-752. 被引量:1
  • 9MEI Chuh,ABDEL-MOTAGLY K,CHEN R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J].ASME Applied Mechanics Reviews,1999,(10):321-332. 被引量:1
  • 10CHENG Guangfeng,MEI Chuh. Finite element modal formulation for hypersonic panel flutter analysis with thermal effects[J].{H}AIAA Journal,2004,(4):687-695.doi:10.2514/1.9553. 被引量:1

二级参考文献52

  • 1陈文俊.几种气动热弹性设计方法[J].战术导弹技术,2001(5):31-39. 被引量:6
  • 2张家忠,刘雁,陈党民.二阶耗散动力系统的降维对解长期行为的误差估计[J].应用数学和力学,2005,26(7):861-866. 被引量:5
  • 3杨智春,夏巍,孙浩.高速飞行器壁板颤振的分析模型和分析方法[J].应用力学学报,2006,23(4):537-542. 被引量:29
  • 4陈文俊.气动加热对飞行器气动弹性特性的影响.现代防御技术,1998,(3):21-28. 被引量:5
  • 5ZIENKIEWICZ O C, TAYLOR R L. The finite element method: volume 3 fluid dynamics [M]. 5th ed. Oxford, UK: Elsevier Butterworth-Heinemann, 2005. 被引量:1
  • 6NITHIARASU P. An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme [J]. Int J Numer Meth Fluids, 2005, 48(12) : 1415-1428. 被引量:1
  • 7NOBARI M R H, NADERAN H. A numerical study of flow past a cylinder with cross flow and inline oscillation[J]. Compul Fluids, 2006, 35(4): 393-415. 被引量:1
  • 8NOBARI M R H, GHAZANFARIAN J. A numerical investigation of fluid flow over a rotating cylinder with cross flow oscillation[J]. Comput Fluids, 2009, 38 (10) : 2026-2036. 被引量:1
  • 9BLOM F J. Considerations on the spring analogy [J]. Int J Numer Meth Fluids, 2000, 32(6): 647-648. 被引量:1
  • 10GUILMINEAU E, QUEUTEY P. A numerical simulation of vortex shedding from an oscillating circular cylinder [J]. J Fluids Struct, 2002, 16(6) : 773-794. 被引量:1

共引文献31

同被引文献20

  • 1谢丹,徐敏.基于特征正交分解的三维壁板非线性颤振分析[J].工程力学,2015,32(1):1-9. 被引量:5
  • 2Dettmer W,Peric D.A computational framework for fluid-rigid body interaction:finite element formulation and applications[J].Computer Methods in Applied Mechanics and Engineering,2006,195:1633-1666. 被引量:1
  • 3Braun A L,Awruch A M.Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation[J].Computers and Structures,2009,87:564-581. 被引量:1
  • 4Hallak P H,Pfeil M S,Oliveira S R C,et al.Aerodynamic behavior analysis of Rio-Niterói bridge by means of computational fluid dynamics[J].Engineering Structures,2013,56:935-944. 被引量:1
  • 5Meldi M,Vergnault E,Sagaut P.An arbitrary Lagrangian-Eulerian approach for the simulation of immersed moving solids with lattice Boltzmann method[J].Journal of Computational Physics,2013,235:182-198. 被引量:1
  • 6Lee J S,Shin J H,Lee S H.Fluid-structure interaction of a flapping flexible plate in quiescent fluid[J].Computers and Fluids,2012,57:124-137. 被引量:1
  • 7Bruno L,Khris H.The validity of 2Dnumerical simulations of vertical structures around a bridge deck[J].Mathematical and Computer Modelling,2003,37:795-828. 被引量:1
  • 8Martinez D O,Chen S.Lattice Boltzmann magnetohydrodynamics[J].Physics of Plasmas,1994,1(6):1850-1895. 被引量:1
  • 9Lallemand P,Luo L S.Theory of the lattice Boltzmann method:dispersion,dissipation,isotropy,galilean invariance,and stability[J].Physical Review E,2000,61(6):6546-6562. 被引量:1
  • 10Germano M,Piomelli U,Moin P,et al.A dynamic subgrid-scale eddy viscosity model[J].Phys Fluids A,1991,3(7):1760-1765. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部