期刊文献+

电润湿作用下水在石墨烯表面流动的边界滑移及界面摩擦 被引量:3

Boundary slip and interfacial friction properties of confined-water flow on graphene under electrowetting
下载PDF
导出
摘要 采用分子动力学方法结合流体边界滑移理论对电润湿作用下水在石墨烯表面流动的边界滑移及摩擦特性进行数值模拟和理论分析。采用石墨烯-水Couette剪切模型,获取电润湿作用下和不带电情况下的剪切速率轮廓、石墨烯表面的剪切应力、边界滑移速率、滑移长度及界面摩擦系数,着重研究界面滑移长度和界面摩擦系数与剪切应变率之间的变化。结果表明:当剪切应变率超过临界剪切应变率时,滑移长度迅速增加,且电润湿作用下的临界剪切应变率明显高于不带电情况下的临界剪切应变率,而界面摩擦系数随着剪切应变率的增大而减小;石墨烯电润湿作用明显增强了石墨烯-水界面的摩擦。无论在电润湿作用下还是不带电情况下,石墨烯-水Couette模型中水的黏性系数与剪切应变率无关。 The boundary slip and interracial friction properties of confined-water flow on two parallel single-layer graphene sheets with a separation of 6 nm under electrowetting conditions were investigated by molecular dynamics simulation and boundary slip the- ory. For both electrowetted and uncharged graphenes, the flow velocity profiles perpendicular to the flow direction, shear stress, boundary slip velocity, slip length and interfacial friction coefficient were obtained with a graphene-water Couette flow model. Re- suits show that the slip length increases abruptly when the shear rate is above a critical value. The critical shear rate in the elec- trowetted graphenes is obviously larger than that in uncharged ones. The interfacial friction coefficient between graphene and water decreases with the shear rate and is increased by electrowetting the graphenes. The water viscosity is independent of the shear rate in both eletrowetted and uncharged graphenes.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2013年第6期475-479,共5页 New Carbon Materials
基金 国家自然科学基金(11102074 51005103 11302037 11272003) 江苏省自然科学基金(BK2011463) 中国博士后基金(2011M501169)及特别资助(2013T60503) 江苏大学高级专业人才启动基金(11JDG024)~~
关键词 石墨烯 电润湿 边界滑移 界面摩擦 Graphene Electrowetting Water Boundary slip Interfacial friction
  • 相关文献

参考文献23

  • 1Novoselov K S, Geim A K, Morozov S V, et al, Electric field effect in atomically thin carbon films [ J]. Science, 2004, 306 (5696) : 666-669,. 被引量:1
  • 2Gein A K, Novoselov K S. The rise of graphene [ J ]. Nature Materials, 2007, 6(3) : 183-191. 被引量:1
  • 3Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [ J]. Sci- ence, 2008, 32/(5887): 385-388. 被引量:1
  • 4Avouris P, Chen Z, Perebeinos V. Carbon-based electronics [ J ]. Nature Nanotechnology, 2007, 2 (10) : 605-615. 被引量:1
  • 5Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene [J]. Science, 2007, 315 (5817) : 1379-1387. 被引量:1
  • 6Balandin A, Ghosh S, Bao W, et al. Superior thermal conduc- tivity of single-layer graphene. Nano Letters, 2008, 8 (3) : 902 -907. 被引量:1
  • 7杨全红.“梦想照进现实”——从富勒烯、碳纳米管到石墨烯[J].新型炭材料,2011,26(1):1-4. 被引量:20
  • 8胡耀娟,金娟,张卉,吴萍,蔡称心.石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010,26(8):2073-2086. 被引量:217
  • 9Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-527. 被引量:1
  • 10Nomura K, MacDonald A. Quantum hall ferromagnetism in graphene [ J ]. Physical Review Letters, 2006, 96 ( 25 ) : 256602. 被引量:1

二级参考文献174

共引文献234

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部