期刊文献+

基于广义函数空间的不连续梁振动分析 被引量:1

Free Vibration Analysis of Elastic Foundation Euler Beams With Different Discontinuities Based on Generalized Functions
下载PDF
导出
摘要 首先运用广义函数建立了轴向力作用下含任意不连续点的弹性基础Euler(欧拉)梁的自由振动的统一微分方程.不连续点的影响由广义函数(Dirac delta函数)引入梁的振动方程.微分方程运用Laplace变换方法求解;与传统方法不同的是,该文方法求得的模态函数为整个不连续梁的一般解.由于模态函数的统一化以及连续条件的退化,特征值的求解得到了极大地简化.最后,以梁-质量块模型和轴向力作用下弹性基础裂纹梁模型为例验证了该文方法的正确性与有效性. The general governing differential equations for the vibration of elastic foundation EulerBernoulli beams with different discontinuities subject to axial forces were established based on generalized functions. For each discontinuity at a given location, a basic modal dis placement function ( Dirac delta function) starting at that location was introduced. The differen tial equations were then solved by means of Laplace transformation. Unlike the classical vibra tion solutions to problems of beams with discontinuities, the generalized solution was in a sin gle unified expression for the whole beam. Due to unification of the modal function and degen eration of the compatibility conditions, solution of the eigenvalues was greatly simplified. Final ly, the free vibration problems of (a) an elastic foundation beam with multiple masses and cor responding rotary inertias, and ( b ) an elastic foundation beam with multiple cracks under axial force, were solved with the proposed method. Results show that the present method is accurate and effecient for free vibration analysis of beams with different discontinuities.
出处 《应用数学和力学》 CSCD 北大核心 2014年第1期81-91,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(51265037) 教育部留学回国人员科研启动基金 江西省高校科技落地计划项目(KJLD12075) 江西省教育厅科技项目(GJJ13524)~~
关键词 自由振动 广义函数 轴向力 弹性基础 不连续梁 free vibration generalized function axial force elastic foundation beam withdiscontinuity
  • 相关文献

参考文献20

  • 1LeeJ. Identification of multiple cracks in a beam using natural frequencies[J].Journal of Sound and Vibration, 2009, 320(3): 482-490. 被引量:1
  • 2LeeJ. Identification of multiple cracks in a beam using vibration amplitudes lJ].Journal of Sound and Vibration, 2009, 326( 112): 205-212. 被引量:1
  • 3Hsu M-H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading u?sing the differential quadrature method[J]. Computer Methods in Applied Mechanics and En?gineering, 2005, 194 ( 1): 1-17. 被引量:1
  • 4Mao Q. Free vibration analysis of multiple-stepped beams by using Adomian decomposition methodJ J]. Mathematical and Computer ModeUing, 2011, 54(112): 756-764. 被引量:1
  • 5Mao Q. Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method[J].Journal of Sound and Vibration, 2012, 331 ( 11) : 2532- 2542. 被引量:1
  • 6Mao Q, Pietrzko S. Free vibration analysis of stepped beams by using Adomian decomposition methodJ J]. Applied Mathematics and Computation, 2010, 217(7): 3429-3441. 被引量:1
  • 7Mao Q, Pietrzko S. Free vibration analysis of a type of tapered beams by using Adomian de?composition methodlJ]. Applied Mathematics and Computation, 2012, 219( 6): 3264-3271. 被引量:1
  • 8Dimarogonas A D. Vibration of cracked structures: a state of the art review[J] . Engineering Fracture Mechanics, 1996,55(5): 831-857. 被引量:1
  • 9Shifrin E, Ruotolo R. Natural frequencies of a beam with an arbitrary number of cracks[J] . Journal of Sound and Vibration, 1999, 222 ( 3) : 409-423. 被引量:1
  • 10Khiem N, Lien T. A simplified method for natural frequency analysis of a multiple cracked beamJ J].Journal of Sound and Vibration, 2001, 245(4): 737-751. 被引量:1

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部