期刊文献+

斜t及斜Laplace分布 被引量:2

Slash t and Slash Laplace Distributions
原文传递
导出
摘要 本文首先介绍一种用来处理重尾数据的斜t分布,并给出其相应的基本数字特征.基于Laplace分布的对称性及重尾性,定义一种新的分布一斜Laplace分布,推导出新分布的密度函数和分布函数,且通过密度函数曲线图书其与Laplace分布进行比较.最后,证实所提斜Laplace分布的重尾性质. In this paper, we first introduce the slash t distribution which can deal with heavy-tailed data sets, and give its basic numerical characteristics. Then a new distribution, called slash Laplace distribution, is defined according to the symmetry and the heavy-tailed property of the Laplace distribu- tion. We derive the probability density function and the cumulative distribution function of the proposed distribution, which is illustrated and compared with the Laplace distribution by density function curves. Finally, we demonstrate the h^nvv-t^il^A ~,~.r ~ ~.^ .4:~.~:~...~:__
出处 《数理统计与管理》 CSSCI 北大核心 2014年第1期72-82,共11页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助项目(41071247 10901025)
关键词 T分布 斜t分布 斜Laplace分布 t distribution, slash t distribution, slash Laplace distribution
  • 相关文献

参考文献10

  • 1Kafadar K. Slash Distribution[M].{H}New York:Wiley,1988. 被引量:1
  • 2Mosteller F,Turkey J W. Data Analysis and Regression[M].{H}Addison-Wesley,Reading,MA,1977. 被引量:1
  • 3Rogers W H,Turkey J W. Understanding some long-tailed symmetrical distributions[J].Statist Neerlandica,1972.211-226. 被引量:1
  • 4Genton M G,Wang J. The multivariate skew-slash distributions[J].{H}Journal of Statistical Planning and Inference,2006.209-220. 被引量:1
  • 5Punathumparambath B. The multivariate skew-slash t and skew-slash Cauchy distributions[J].Model Assisted Statistics and Applications,2012.33-40. 被引量:1
  • 6徐晓岭,王蓉华,吴慧玲,顾蓓青.降水量的统计拟合[J].数理统计与管理,2010,29(6):961-969. 被引量:2
  • 7Kotz S,Nadarajah S. Multivariate t distributions and their applications[M].{H}New York:Cambridge University Press,2004. 被引量:1
  • 8茆诗松;程依明;濮晓龙.概率论与数理统计教程[M]{H}北京:高等教育出版社,2004. 被引量:1
  • 9姜宁宁,于丹.Weibull分布定时截尾试验数据情形下可靠度的置信限[J].数理统计与管理,2010,29(1):84-87. 被引量:3
  • 10Smith R L,Naylor J C. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull regression Models[J].Appl Statist,1987.358-369. 被引量:1

二级参考文献2

共引文献3

同被引文献46

  • 1王春峰,蒋祥林,吴晓霖.随机波动性模型的比较分析[J].系统工程学报,2005,20(2):216-219. 被引量:16
  • 2李付军.SV-GED模型在中国股市的VaR与ES度量及分析[J].系统工程理论方法应用,2006,15(1):44-48. 被引量:6
  • 3Kafadar K. Slash Distribution [M]. Encyclopedia of Statistical Sciences,New York: Wiley, 1988. 被引量:1
  • 4Mosteller F, Tukey J W. Data Analysis and Regression [M]. Reading MA:Addison-Wesley, 1977. 被引量:1
  • 5Rogers W H, Tukey J W. Understanding Some Long-Tailed Symmetrical Distributions [J]. Statist. Neerlandica, 1972. 被引量:1
  • 6Genton M G, Wang J. The Multivariate Skew-Slash Distributions [J]. Journal of Statistical Planning and Inference, 2006(1). 被引量:1
  • 7Tan Peng. The Slash and Skew-Slash Student t Distributions [J]. Submitted to Elsevier Science, 2005. 被引量:1
  • 8Simon M K. Probability Distributions Involving Gaussian Random Variables [M]. New York: Kuwer Academic Publishers, 2002. 被引量:1
  • 9Kozubowski T, Podgorski K, Samorodnitsky G. Tails of Levy Measure of Geometric Stable Random Variables [J]. Extremes, 1998(1). 被引量:1
  • 10Nolan J P. Stable Distributions: Models for Heavy-Tailed Data [M]. Boston.Birkhauser, 2009. 被引量:1

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部