期刊文献+

小波网络平均影响值的航空发动机自变量筛选 被引量:6

Aero-engine arguments selection based on wavelet network mean impact value
下载PDF
导出
摘要 为了快速准确地实现发动机参数非线性自变量筛选,基于平均影响值的思想和小波神经网络学习能力强、收敛速度快、具有自适应性和容错性等优点,提出小波神经网络平均影响值的发动机自变量筛选方法。根据参数之间的关系特点,建立多参数连续小波逼近网络模型,并给出学习算法。仿真实例表明,该方法不但能够实现复杂的非线性变量筛选,而且对比其他非线性变量筛选方法,具有精度更高、速度更快的特点。 To achieve the non-linear variables selection rapidly and accurately, the engine arguments parameters se lection method for wavelet neural network's Mean Impact Value (MIV) was proposed based on the ideological of MIV and the advantages such as learning ability, fast convergence with adaptive and fault tolerance of wavelet neural network. According to the relationship characteristics of the engine parameters, the continuous multi-parameter ap proximation wavelet network model was established, and the learning algorithm was given. Simulation results showed that the proposed method could achieve complex nonlinear variable selection and have higher accuracy and faster features by comparing to other non-linear variable selection method.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2013年第12期3062-3067,共6页 Computer Integrated Manufacturing Systems
基金 中国民航总局科技项目(MHRD201052) 国家863计划重点资助项目(2012AA040911) 国家自然科学基金重点资助项目(60939003)~~
关键词 航空发动机 小波网络 平均影响值 自变量筛选 aero-engine wavelet network mean impact value arguments selection
  • 相关文献

参考文献16

  • 1李一波,张光明,蒋丽英.航空发动机气路故障诊断技术研究现状[J].燃气轮机技术,2009,22(3):10-15. 被引量:10
  • 2MATHIOUDAKIS K, STAMATIS A,TSALAVOUTAS A’et al. Performance analysis of industrial gas turbines for enginecondition monitoring[J]. Proceedings of the Institution of Me-chanical Engineers, Part A: Journal of Power Energy, 2001,215(2): 173-184. 被引量:1
  • 3STAMATICS A G. Evaluation of gas path analysis methodsfor gas turbine diagnosis[J]. Journal of Mechanical Science andTechnology.2011, 25(2) : 469-477. 被引量:1
  • 4PU Xingxing, LIU Shangming, JIANG Hongde, et al. SparseBayesian learning for gas path diagnostics[J]. Journal of Engi-neering for Gas Turbines and Power,2013. 135(7) : 1-8. 被引量:1
  • 5刘志荣,朱睿,梁忠生,刘玥,鲍锋.发动机健康基线及评估准则研究[J].厦门大学学报(自然科学版),2010,49(4):520-525. 被引量:14
  • 6VOUONI A J. Gas turbine parameter corrections[C〕//Pro-ceedings of American Society of Mechanical Engineers. NewYork,N.Y.,USA:ASME,1998: 613-621. 被引量:1
  • 7KURZKE J. Model based gas turbine parameter correctionsCQ//Proceedings of ASME International Gas Turbine Insti-tute Publishing. New York, N. Y.,USA: ASME, 2003:91-99. 被引量:1
  • 8CASONI A. NUNCIO,COLITTO. Corrected parameter con-trol for two shaft gas turbine[C]// Proceedings of the ASMETurbo Expo. New York,N. Y. ,USA: ASME, 2004: 741-748. 被引量:1
  • 9章元,朱尔一,李静,庄峙厦.模拟退火算法与遗传算法结合用于变量筛选[J].分析化学,1999,27(10):1131-1135. 被引量:4
  • 10章元,朱尔一,庄峙厦,王小如.遗传算法用于变量筛选[J].高等学校化学学报,1999,20(9):1371-1375. 被引量:7

二级参考文献42

共引文献71

同被引文献49

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部