期刊文献+

基于改进型神经网络的双目摄像机标定 被引量:6

Improved Neural Network for Binocular Camera Calibration
下载PDF
导出
摘要 摄像机标定是机器视觉中最重要的环节之一,传统标定方法运算量大、计算复杂,非常繁琐。为解决标定存在的若干问题,提出基于改进神经网络的双目视觉摄像机标定方法。通过对双目摄像机有效模型分析,建立空间点图像坐标与世界坐标非线性映射关系,同时引入自适应学习算法,实现隐层神经元的自适应选取,并且在创建网络模型前对样本数据进行归一化处理,提前终止策略,使网络泛化能力得到极大改善。通过与经典标定方法进行比较,表明基于改进型神经网络标定方法能获得较好的双目标定精度。 Computer vision has being applied widely at industrial, military and transportation. Camera calibration is one of the most important aspects of computer vision, but traditional calibration methods are comparatively complicated, and the arithmetic amounts are big. To solve some issues in calibration, this paper proposed the camera calibration method based on binocular vision improved neural network. In this method, nonlinear mapping between image coordinates and world coordinates is set up through analysis of binocular camera model ; then introducing an adaptive learning algorithm, the adaptive selection of hidden layer neuron is realized; before creating the network model, the data sample is normalized, therefore, recognition ability of network is improved. Compared with traditional calibration methods, experimental results show that the proposed binocular calibration method based on improved neural network could obtain high accuracy.
作者 延和 吴斌
出处 《西南科技大学学报》 CAS 2013年第4期66-70,共5页 Journal of Southwest University of Science and Technology
基金 国防基础科研计划资助项目(B3120110005)
关键词 摄像机标定 双目视觉 神经网络 自适应性 Camera calibration Binocular vision Neural network Adaptation
  • 相关文献

参考文献12

二级参考文献38

  • 1丰文义,刘斌,凌燮亭.基于独立性参数的无导师图象变形校正[J].复旦学报(自然科学版),1995,34(3):255-261. 被引量:6
  • 2汪国有,俞立科,张天序,桑农,杜诚.一种新的大视场景象的几何失真校正方法[J].数据采集与处理,1996,11(2):112-115. 被引量:7
  • 3刘阳成,朱枫.一种新的棋盘格图像角点检测算法[J].中国图象图形学报,2006,11(5):656-660. 被引量:33
  • 4Hagan M T,Demuth H B,Beale M.Neural network design[M].Beijing:China Machine Press,2008. 被引量:1
  • 5Hanrris C G,Stephens M J.A combined corner and edge detector[C]// Proceedings Fourth Alvey Vision Conference,Manchester,1988:147-151. 被引量:1
  • 6Lynch M B,Daglib C H,Vallenki M.The use of feedforward neural networks for machine vision calibration[J].Production Economics,1999,60-61:479-489. 被引量:1
  • 7Tsai R Y.A venrsatile camera calibration technique for high accuracy 3d machine vision metrology using off-the-shelf TV cameras and lenses[J].IEEE Robotics & Automation,1987,3(4):323-344. 被引量:1
  • 8Heikkila J,Silven O,A four-step camera calibration procedure with implicit image correction[C]//Proc of the 13th Computer Society Conference on Computer Vision and Pattern Recognition,Vienna,Austria,1997:166-170. 被引量:1
  • 9Bradski G, Kaebler A. Learning OpenCV[M]. 于仕琪, 刘瑞祯, 译. 北京: 清华大学出版社, 2009. 被引量:1
  • 10Zhang Zhengyou. A Flexible New Technique for Camera Cali- bration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. 被引量:1

共引文献240

同被引文献64

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部