期刊文献+

一种基于标签传播的半监督核学习算法 被引量:1

A Semi-supervised Kernel Learning Method Based on Label Propagation
下载PDF
导出
摘要 一个好的核函数能提升机器学习模型的有效性,但核函数的选择并不容易,其与问题背景密切相关,且依赖于领域知识和经验。核学习是一种通过训练数据集寻找最优核函数的机器学习方法,能通过有监督学习的方式寻找到一组基核函数的最优加权组合。考虑到训练数据集获取标签的代价,提出一种基于标签传播的半监督核学习方法,该方法能够同时利用有标签数据和无标签数据进行核学习,通过半监督学习中被广泛使用的标签传播方法结合和谐函数获得数据集统一的标签分布。在UCI数据集上对提出的算法进行性能评估,结果表明该方法是有效的。 A good kernel function can improve the performance of machine learning models. However, it is not easy to properly determine a kernel since it is closely related to application background and relies on domain knowledge and experience. Kernel learning is a machine learning method which seeks an optimal kernel funetion with a given training data set. It often seeks an optimal weighted combination of a pre-defined set of base kernel functions. Considering the cost of acquiring labeled training samples,we propose a semi-supervised kernel learning method based on label propagation, which makes use of labeled and unlabeled samples simutaneously to perform kernel learning,and applies label propagation method,a popular method in semi-supervised learning, combined with harmonic ffmction to obtain a unified distribution of the whole data set. The proposed metod is evaluated on the UCI benchmark data set and the results show its effectiveness.
作者 袁优 张钢
出处 《电脑与电信》 2013年第11期35-37,共3页 Computer & Telecommunication
基金 广东工业大学高教研究基金项目 项目编号:2013Y04 广东省大学生创新创业训练计划项目 项目编号:1184510037 广州市海珠区科技计划项目 项目编号:2011-YL-05
关键词 核学习 半监督学习 标签传播 和谐函数 支持向量机 kernel learning semi-supervised learning label propagation harmonic function support vector machine
  • 相关文献

参考文献11

  • 1Tom Diethe and Mark Girolami. 2013. Online learning with multiple kernels:A review. Neural Comput. 25,3 (March 2013), 567-625. 被引量:1
  • 2Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. 2005. Be- yond the point cloud z from trnsductive to semi-supervised learning. In Proceedings of the 22nd international conference on Machine learning (ICML '05), 2005, pp. 824-831. 被引量:1
  • 3Bing Liu,Shi-Xiong Xia,and Yong Zhou. Unsupervised non-parametric kernel learning algorithm. Know. -Based Syst. 4,2013,pp. 1-9. 被引量:1
  • 4张钢,印鉴,程良伦,钟钦灵.半监督多示例核[J].计算机科学,2011,38(9):220-223. 被引量:5
  • 5Prateek Jain, Brian Kulis,Jason V. Davis, and Inderjit S. Dhillon. 2012. Metric and kernel learning using a linear transformation. J. Mach. Learn. Res. 13,2013,pp. 519-547. 被引量:1
  • 6G. Zhang and L. -L. Cheng, Semi-supervised classification with metric learning, In Proceedings of 2010 2nd WRI Global Congress on Intel- ligent Systems (GCIS 2010),vol. 3. IEEE Computer Society , 2010 , pp. 123-126. 被引量:1
  • 7Jin,R.;Hoi,S. C. H. &Yang,T. Hutter,M. ;Stephan,F. ; Vovk,V. 8,: Zeugmann,T. (Eds.) Online Multiple Kernel Learning:Al- gorithms and Mistake Bounds. ALT, Springer, 2010,6331,390-404. 被引量:1
  • 8Q. Pan,G. Zhang,X. -Y. Zhang,Z. -J. Cen,Z. -M. Huang,and S. -Q. Chen,Ensemble learning with kernel mapping,In Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR 2011). IEEE Computer Society, 2011 ,pp. 253-257. 被引量:1
  • 9Corinna Cortes,Mehryar Mohri,and Afshin Rostamizadeh. 2012 Algorithms for learning kernels based on centered alignment. J. Mach Learn. Res. 13,2012,pp. 795-828. 被引量:1
  • 10UCI数据集[EB/OL]http://archiveicsuci.edu/ml/. 被引量:2

二级参考文献15

  • 1Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997,89 (1/2) : 31-71. 被引量:1
  • 2Zhou Zhi-hua. Multi-Instance Leaming: A Survey[R]. CS, Nanjing University, 2004. 被引量:1
  • 3Jia Yang-qing, Zhang Chang-shui. Instance-level Semisupervised Multiple Instance Learning[C]//Proceedings of the 23rd Intl. Conf. AAAI, 2008 : 640-645. 被引量:1
  • 4Rahmani R, Goldman S A. MISSL.. Multiple-instance semi-supervised learning[C]// Proceedings of the 23rd Intl. Conf. ICML, 2006 : 705-712. 被引量:1
  • 5Maron O, Lozano-Perez T. A framework for multiple-instance learning[J]. Neural Information Processing Systems, 1998. 被引量:1
  • 6Gartner T, Flach P A, Kowalczyk A, et al. Multi-instance kernels[C]//Proceedings of the 19th Intl. Conf. ICML, 2002 : 179- 186. 被引量:1
  • 7Sindhwani V, Niyogi P,Belkin M. Beyond the point cloud: from transductive to semi-supervised learning[C]//Proceedings of the 22nd Intl. Conf. ICML, 2005 : 824-831. 被引量:1
  • 8Zhou Zhi-hua, Sun Yu-yin, Li Yu-feng. Multi-instance learning by treating instances as non-I. I. D. samples[C]/// Proceedings of the 26th Intl. Conf. ICML,2009:1249-1256. 被引量:1
  • 9Zhu X, Ghahramani Z, Lafferty J. Semisupervised learning using gaussian fields and harmonic functions[C]// Proceedings of the 20th Intl. Conf. ICML, 2003. 被引量:1
  • 10Zhou Zhi-hua, Xu Jun-ming. on the relation between multi-instance learning and semi-supervised learning[C]// Proceedings of the 24th Intl. Conf. ICML,2007: 1167-1174. 被引量:1

共引文献5

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部