期刊文献+

混合高斯背景更新算法的改进和实现

Optimization and Implementation of Mixed Gauss Background Updating Algorithm
下载PDF
导出
摘要 混合高斯背景更新算法在处理红外目标检测中,与其他算法相比有着明显的优势。然而传统的混合高斯背景更新算法仍然存在着不足,针对传统算法的不足,提出了有效的改进方法,使混合高斯背景更新算法的处理分为兴趣区和非兴趣区进行处理,在不同的区域采取不同的高斯分布个数和权值更新速率进行处理,同时通过改变不同的背景更新速率可以处理背景发生突变的情况和前景目标静止的情况,有效地提高了混合高斯背景更新算法检测红外目标的能力,仿真实验取得了较好的效果。 Compared with other algorithms,the mixed Gauss background updating algorithm has obvious advantages in infrared target detection.Aiming at the shortcomings of traditional methods,an improved method was proposed,for which,the processing of the mixed Gauss background updating algorithm is divided into areas of interest and non-interest,and different numbers of Gauss distribution and weight updating rates are applied in different areas.Meanwhile,by adjusting the different background updating rate,it can deal with the situation of background mutation and static foreground objects,so the ability of infrared targets detection is effectively improved,and simulation experiments achieve good results.
出处 《半导体光电》 CAS CSCD 北大核心 2013年第6期1073-1076,共4页 Semiconductor Optoelectronics
基金 江苏省"六大人才高峰"计划项目(2010-DZXX-022) 国家自然科学基金项目(61271332) 总装预先研究基金项目(40405050303)
关键词 红外目标检测 背景更新 高斯分布 权值 兴趣区 infrared target detection background update Gauss distribution weight value interest area
  • 引文网络
  • 相关文献

参考文献6

二级参考文献34

  • 1黄常青,郑链,宋承天.红外多目标跟踪算法研究[J].红外与激光工程,2005,34(2):188-191. 被引量:12
  • 2史忠科.Kalman滤波新结构及其在目标跟踪中的应用[J].自动化学报,1994,20(5):605-609. 被引量:5
  • 3侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 4曹丽,汪亚明,周维达,黄文清.基于动态图像序列的运动目标检测与跟踪[J].计算机仿真,2006,23(5):194-196. 被引量:7
  • 5Fujiyoshi H, Lipton A. Real-time Human Motion Analysis by Image Skeletonization[C]//Proc. of WACV'98. Princeton, USA: [s. n.], 1998: 15-21. 被引量:1
  • 6Picardi M. Background Subtraction Techniques: A Review[C]//Proc. of IEEE International Conference on Systems, Man and Cybernetics. Hague, Holland: [s. n.], 2004: 3099-3104. 被引量:1
  • 7Collins R, Lipton A, Kanade T, et al. A System for Video Surveillance and Monitoring[R]. Robotics Institute, Carnegie Mellon University, Tech. Rep.: CMU-RI-TR-00-12, 2000. 被引量:1
  • 8Jain R, Nagel H. On the analysis of accumulative difference pictures from image sequences of real world scenes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2) : 206-214. 被引量:1
  • 9Wren C R, Azarbayejani A, Darrell T, et al: Pfinder: real-time tracking of the human body [ J ]. IEEE Transactions on PAMI, 1997, 19(7) : 780-785. 被引量:1
  • 10Grimson W E L, Stauffer C, Romano R, et al. Using adaptive tracking to classify and monitor activities in a site [ C ] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 1998 : 22-29. 被引量:1

共引文献59

;
使用帮助 返回顶部