期刊文献+

氢氧焰入射角对石英玻璃沉积效率的影响

The Influence of Oxy-hydrogen Flame Incidence Angle on Deposition Efficiency in Synthetic Silica Glass Process
下载PDF
导出
摘要 为提高CVD合成石英玻璃的沉积效率,对不同氢氧焰入射角的工况进行了试验和数值模拟,比较并分析了沉积效率的变化规律和二氧化硅微粒的沉积机制.结果表明:数值模拟与试验测得的沉积效率基本吻合;近沉积面的速度分布决定了二氧化硅微粒的沉积分布,二氧化硅微粒沉积的主要机制为湍流沉积,热泳沉积起协助作用;氢氧焰入射角不同,近沉积面的速度分布和沉积面的高温区域均有明显差异,入射角过大或过小,都会造成二氧化硅微粒沉积位置和沉积面高温区的重合区域减小,降低沉积效率.入射角度为22°时,沉积效率最高(71%). To improve the deposition efficiency of synthetic silica glass by chemical vapor deposition ( CVD), the working conditions of different incidence angle of oxy-hydrogen flame were tested by experimental and numerical simulation methods. The variation law of deposition efficiency and the deposition mechanism of silica particles were analyzed. The simulation results of deposition efficiency agree with the experimental results. The deposit distribu- tion of silica particle is determined by the speed distribution near the deposition plane, and the main deposition mechanism is turbulence, supplemented by thermophoresis. There are significant differences in the speed distribu- tion near the deposition plane and the high temperature region of deposition plane with the change of incidence an- gles of oxy-hydrogen flame. If the incidence angle is too large or too small, the overlap zone between the region of particle deposition and the high-temperature region was reduced, which resulted in lower deposition efficiency. The best efficiency 71% is obtained when the incidence angle is 22°.
作者 徐彬 顾真安
出处 《哈尔滨理工大学学报》 CAS 2013年第6期5-9,共5页 Journal of Harbin University of Science and Technology
基金 国家科技支撑计划(2013BAE03B01)
关键词 化学气相沉积 沉积效率 石英玻璃 chemical vapor deposition deposition efficiency silica glass
  • 相关文献

参考文献21

  • 1KAJIHARA K. Improvement of Vacuum-ultraviolet Transparency of Silica Glass by Modification of Point Defects[ J]. Journal of the Ceramie Society of Japan, 2007, 115 (1338) : 85 -91. 被引量:1
  • 2AVNEET K, SURINDER S. Gamma Ray Irradiation Effects on the Optical Properties of BaO-Na2O-B2O3-SiO2 Glasses [ J ]. Journal of Molecular Structure, 2013, 1048:78-82. 被引量:1
  • 3BAYRAKCEKEN F, YEGIN K. Resonance Fluorescence of Fused Silica by the Depopulation of the Ground State [J]. International Journal of Photoenergy, 2012, 2012 : 1 - 3. 被引量:1
  • 4FENG T, WANG P Y. CFD Simulation of the Fused Silica Syn- thesis Furnace[ J]. Applied Mechanics and Materials, 2013, 284 -287:51 -56. 被引量:1
  • 5OKAZAKI K, KUBO K, SHIMOGAKI T, et al. Lasing Character- istics of ZnO Nanosheet Excited by Ultraviolet Laser Beam [ J ]. Advanced Materials Letters, 2011,2 (5) : 354 -357. 被引量:1
  • 6CAER S L, BRUNET F, CHATELAIN C, et al. Modifications under Irradiation of a Self-Assembled Monolayer Grafted on a Nan- oporous Silica Glass: A Solid-State NMR Characterization [J]. The Journal of Physical Chemistry C, 2012, 116 ( 7 ) : 4748 - 4759. 被引量:1
  • 7曾群,周永恒,任豪,等.真空蒸镀Nd:YAG薄膜的工艺研究[J].材料科学,2012,2i42-46. 被引量:1
  • 8LILIENTHAL K, STUBENRAUCH M, FISCHER M, et al. Fused Silica ' Glass Grass' : Fabrication and Utilization [ J ]. Journal of Micromechanics and Mieroengineering, 2010, 20 (2): 25017 - 25027. 被引量:1
  • 9MURAKAMIA M, YOSHIDAA M, NAKANOA H, et al. Laser Oscillation in 5cm Nd-doped Silica Fiber Fabricated by Zeolite Method[J]. Journal of Non-Crystalline Solids, 2011, 357 (3) : 963 - 965. 被引量:1
  • 10SANTOS J S, ONO E, FUJIWARA E, et al. Control of Optical Properties of Silica Glass Synthesized by VAD Method for Photon- ic Components[J]. Optical Materials, 2011, 33 (12): 1879 - 1883. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部