期刊文献+

和谐统一混合择优网络模型耦合映像格子的相继故障 被引量:1

Cascading failures in couple map lattices with harmonious unification hybrid preferential model
下载PDF
导出
摘要 将耦合映像格子的相继故障模型作用于和谐统一的混合择优网络模型(HUHPM),通过仿真分析的方法研究了和谐统一混合择优网络的相继故障行为。仿真中采用了蓄意攻击和随机攻击两种策略。仿真结果表明,同规模的和谐统一混合择优网络抵抗随机攻击的能力比蓄意攻击要强;另外,网络的总混合比对这类网络相继故障行为的扩散有很强的影响,在蓄意攻击下,随着随机性连接的逐渐增加,网络的抵抗蓄意攻击的能力逐渐增强,而在随机攻击下则正好相反,即随着确定性连接的增加,网络抵抗随机攻击的能力越来越强。因此,在实际应用中可以通过调节混合比来增强这类网络的鲁棒性。 Cascading failures in coupled map lattices with Harmonious Unification Hybrid Preferential Model (HUHPM) were investigated through simulation analysis methods in this paper. Two attack strategies: deliberate attack and random attack were adopted in this fixed node number network. According to simulation result, the HUHPM network has better robustness in random attack than in deliberate attack. In addition, the hybrid ration has an important effect on cascading failures of the HUHPM network. In the deliberate attack case, the network became more robust to deliberate attack with the increasing of the random preferential attachment. But in the random attack case, the network became more robust to random attack with the increasing of the deterministic preferential attachment. Therefore, in practical applications, the robustness of HUHPM network can be enhanced by tuning the hybrid ration.
出处 《计算机应用》 CSCD 北大核心 2014年第1期18-22,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61164005 60863006) 教育部创新团队项目(ITR1068) 教育部春晖计划项目(Z2012101) 青海师范大学青年创新基金资助项目(12948)
关键词 和谐统一混合择优网络模型(HUHPM) 耦合映像格子 相继故障 混合比 鲁棒性 Harmonious Unification Hybrid Preferential Model (HUHPM) couple map lattice cascading failure hybrid ration robustness
  • 相关文献

参考文献25

  • 1WATTS D J,STROGATS S H. Collective dynamics of small world networks[J].{H}NATURE,1998,(6684):440-442. 被引量:1
  • 2BARABASI A L,ALBERT R. Emergence of scaling in random networks[J].{H}SCIENCE,1999,(5439):509-512.doi:10.1126/science.286.5439.509. 被引量:1
  • 3LEWIS T G. Network science:theory and applications[M].{H}New York:John Wiley and Sons,Inc,2009. 被引量:1
  • 4NEWMAN M,BARABASI A L,WATTS D J. The structure and dynamics of networks[M].{H}Princeton,New Jersey:Princeton University Press,2006. 被引量:1
  • 5DOROGOVTSEV S N,MENDES J F F. Scaling behaviour of developing and decaying networks[J].{H}Europhysics Letters,2000,(01):33. 被引量:1
  • 6YOOK S H,JEONG H,BARABASI A L. Weighted evolving networks[J].{H}Physical Review Letters,2001,(25):5835-5842. 被引量:1
  • 7BIANCONI G,BARABASI A L. Competition and multiscaling in evolving networks[J].{H}Europhysics Letters,2001,(04):436-442.doi:10.1209/epl/i2001-00260-6. 被引量:1
  • 8ANTAL T,KRAPIVSKY P L. Weight-driven growing networks[J].Physical Review E:Statistical Nonlinear and Soft Matter Physics,2005.026103. 被引量:1
  • 9BARRAT A,BARTHELEMY M,PASTOR-SATORRAS R. The architecture of complex weighted networks[J].{H}Proceedings of the National Academy of Sciences(USA),2004,(11):3747-3752. 被引量:1
  • 10BARRAT A,BARTHELEMY M,VESPIGNANI A. Weighted evolving networks:coupling topology and weight dynamics[J].{H}Physical Review Letters,2004,(22):228701. 被引量:1

二级参考文献55

共引文献185

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部