期刊文献+

基于遗传神经网络算法的海面风速反演新方法 被引量:2

New method of sea surface wind speed retrieval using genetic algorithms and neural network
下载PDF
导出
摘要 针对海面运动的复杂性、海面电磁散射理论模型的局限性以及利用SAR图像反演海面风速存在的非线性现象,基于遗传神经网络的方法,以业务化的CMOD4模式函数数据为基础,采用Fletcher-Reeves算法的变梯度反向传播算法,建立一种SAR风速反演的新模型。试验结果表明,利用遗传神经网络方法反演海面风速是可行的,当随机误差小于10%时,模型的抗噪能力较强,风速反演的精度较为理想。比较不同风速下的反演结果可以发现,在中、小风速的情况下,模型的抗噪能力较强,模型学习拟合和预测检验的精度相对较高;在大风速的情况下,模型的反演能力有待于进一步提高。 There exist the complexity of sea surface and the ic scattering, and nonlinear phenomena in the retrieval of limitation of theoretical model of electromagnet- sea surface wind speed, which is based on syn- thetic aperture radar (SAR) images. With the method of genetic neural network and Fletcher-Reeves, this paper established a new model of retrieving wind speed based on operational data of CMOD4 model func- tion. The result shows that this model is available in retrieving ocean surface wind. When random error is less than 10~, this model has high denoising ability and the accuracy of the retrieved ocean surface wind speed is ideal. Comparing the results of different wind speed, shows that in the ease of low or middle wind, the fitness of learning model and the accuracy of predicted tests have both ideal accuracy, and that in the case of strong wind, the inversion result of this model is comparatively poor.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2013年第6期679-686,共8页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(41105012 41205013)
关键词 星载SAR 遗传神经网络 海面风速 CMOD4模式函数 sapceborne SAR~ genetic neural network~ sea surface wind speed~ CMOD4 model function
  • 相关文献

参考文献20

  • 1Hui Lin,Qing Xu,Quanan Zheng.An overview on SAR measurements of sea surface wind[J].Progress in Natural Science:Materials International,2008,18(8):913-919. 被引量:14
  • 2ALPERS W, HENNINGS I. A theory of the imagingmechanism of underwater bottom topography by realand synthetic aperture radar [J]. J Geophys Res,1994,89(C6):10529-10546. 被引量:1
  • 3WACKERMAN C C, RUFENACH R, JOHANNES-SEN J ?et al. Wind vector retrieval using ERS-1 syn-thetic aperture radar imagery[J], IEEE Trans GeosciRemote Sens, 1996,34(6) : 1343-1352. 被引量:1
  • 4VACHON P W, DOBSON F W. Validation of windvector retrieval from ERS-1 SAR images over the o-cean[J]. Global Atmos Ocean Syst? 1996*5(2): 177-187. 被引量:1
  • 5FETTERER F, GINERIS D, WACKERMAN C C.Validating a scatterometer wind algorithm for ERS-1SAR[J]. IEEE Trans Geosci Remote Sens,1998, 36(2):479-492. 被引量:1
  • 6HORSTMANN J, KOCH W, THOMPSON D R,etal. Hurricane winds measured with synthetic apertureradarsCC]. IGARSS 2006, Denver: IEEE, 2006. 被引量:1
  • 7PICHEL W G, LI X,MONALDO F,et al. High-ve-locity wind measurements using synthetic aperture ra-dar[C]. IGARSS 2008.Boston:IEEE? 2008. 被引量:1
  • 8KIM D J, MOON W M, NAM S H. Evaluation ofENVISAT ASAR data for measurement of surfacewind field over the Korean east coast [C]. IGARSS'2003 .Toulouse: IEEE, 2003. 被引量:1
  • 9NIE C,LONG D G . RADARSAT ScanSAR wind re -der hurricane conditions [C]. IGARSS 2008, Boston:IEEE, 2008. 被引量:1
  • 10PORTABELLA M, STOFFELEN A. Toward an opti-mal inversion method for synthetic aperture radarwind retrieval[J].Journal of Geophysical Research,2002,107(C8) :1-13. 被引量:1

二级参考文献16

共引文献25

同被引文献43

  • 1郑崇伟,周林,宋帅,苏勤.中国海风能密度预报[J].广东海洋大学学报,2014,34(1):71-77. 被引量:3
  • 2黄嘉宏,李江南,魏晓琳,冯瑞权,王安宇.同化QuikSCAT资料对台风Vongfong(2002)数值模拟的影响[J].中山大学学报(自然科学版),2006,45(4):116-120. 被引量:11
  • 3姚圣康,王华.0505号台风“海棠”特征分析[J].海洋预报,2006,23(B09):115-120. 被引量:4
  • 4王慧,隋伟辉.中国近海18个海区的海面大风季节变化特征[J].天气预报技术总结专刊,2012,4(3):-65. 被引量:1
  • 5ZHENGChongwei, LI Chongyin. Variation of the wave energy and significant wave height in the China Sea and adjacent waters [J]. Renewable and Sustain able Energy Reviews, 2015(43) :381-387. 被引量:1
  • 6ZHENG Chongwei, PAN Jing, LI Jiaxun. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009 [J]. Ocean Engineering, 2013(65) :39-48. 被引量:1
  • 7ZHENGChongwei, PAN Jing. Assessment of the global ocean wind energy resource [J]. Renewable and Sustainable Energy Reviews, 2014 (33) : 382-391. 被引量:1
  • 8IPCC. Climate Change 2007. The Physical Science Basis. Contri Bution of Working Gmp I to the Fourth Assessment Re,t:or/of Ihe lntergovemmental Panel on Climate Change [ M]. Gambridge, UK: Cambridge University Press, 2007. 被引量:1
  • 9Aguirre A A, Tabor (. M. Global factot,'s driving emerging infec- tious diseases : J ]. Annals of the New Y:rk Academy of Sci- ences, 2008,1149 : 1-3. 被引量:1
  • 10Gage K L, Burkot T R, E/sen R J, et al. Climate and vector borne diseases [ J ]. American Journal of Preventi',e Medicine, 2008,35 : 436450. 被引量:1

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部