期刊文献+

若干介观体系的散射矩阵对称性质的一些讨论

Discussion on the symmetry properties of scattering matrix of some mesoscopic systems
下载PDF
导出
摘要 散射矩阵是刻画许多满足量子相干性介观体系的电子输运性质的重要理论工具.结合几个介观体系的量子力学散射问题,讨论了体系的对称性对散射矩阵对称性的重要影响.几个被讨论的例子包括:1)满足时间反演不变性的自旋轨道耦合体系;2)含单轴应变的石墨烯(满足中心反演对称)体系;3)含有Majorana费米子(手征Majorana粒子的一维波导模式或Majorana束缚态)的2个典型问题.从系统的对称性推导散射矩阵的对称性,进而对体系的输运性质得出一些定性的理解.在某些场合,依据散射矩阵的对称性甚至可以对体系的电子结构的拓扑性质给出预言. Taking scattering matrix as an important theoretical tool for characterizing the transport property of mesoscopic systems with quantum coherence, it was discussed the quantum scattering problem for several me-soscopic systems, which included : 1 ) spin-orbital coupled systems with time reversal symmetry ; 2 ) graphene with 'uniaxial strain which preserves inversion symmetry; 3)two typical problems related to Majorana Fermion (Chiral Majorana Fermion and Majorana bound states). The symmetry property of scattering matrix from the symmetry of the system was deduced, and some qualitative understanding of the transport property were ob-tained. It was also pointed out that in some cases, even topological properties of electronic structure of the sys-tem could be predicted.
作者 蒋永进 徐勇
出处 《浙江师范大学学报(自然科学版)》 CAS 2013年第4期379-385,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11004174)
关键词 散射矩阵 对称性 自旋轨道耦合 石墨烯 Majorana费米子 scattering matrix symmetry spin-orbital coupling graphene Majorana Fermion
  • 相关文献

参考文献35

  • 1阎守胜;甘子钊.介观物理[M]{H}北京:北京大学出版社,2000. 被引量:1
  • 2Datta S. Electronic transport in mesoscopic systems[M].{H}Cambridge:Cambridge University Press,1997. 被引量:1
  • 3Buttiker M. Four-terminal-phase-coherent conductance[J].{H}Physical Review Letters,1986,(14):1761-1764. 被引量:1
  • 4Nikolic' B K,Souma S,Z(a)rbo L P. Nonequilibrium spin hall accumulation in ballistic semiconductor nanostructures[J].{H}Physical Review Letters,2005,(04):046601. 被引量:1
  • 5Jiang Yongjin,Hu Liangbin. Symmetry properties of spin currents and spin polarizations in multiterminal mesoscopic spin-orbit-coupled systems[J].{H}Physical Review B:Condensed Matter,2007,(19):195343. 被引量:1
  • 6张俊杰,张艳娜,邱宇,蒋永进.从散射波函数方法中导出的非平衡格林函数公式[J].浙江师范大学学报(自然科学版),2009,32(1):59-64. 被引量:1
  • 7Katsnelson M I,Novoselov K S,Geim A K. Chiral tunnelling and the Klein paradox in graphene[J].{H}Nature Physics,2006.620-625. 被引量:1
  • 8Jiang Yongjin,Lu Feng,Zhaifeng. Connectivity of edge and surface states in topological insulators[J].{H}Physical Review B:Condensed Matter,2011,(20):205324. 被引量:1
  • 9Sen D,Deb O. Junction between surfaces of two topological insulators[J].{H}Physical Review B:Condensed Matter,2012,(24):245402. 被引量:1
  • 10Alicea J. New directions in the pursuit of Majorana fermions in solid state systems[J].{H}Reports on Progress in Physics,2012,(07):076501. 被引量:1

二级参考文献107

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部