期刊文献+

基于Gabor变换的盲分离算法及其应用 被引量:4

Gabor transform-based of blind separation algorithm and its application
下载PDF
导出
摘要 对振动信号具有非平稳性,结合时频分析和盲分离技术的特点,提出基于Gabor变换的盲分离算法.该方法利用Gabor展开的线性时频变换特性,根据Gabor展开系数求出近似混合矩阵,实现盲信号分离.数值仿真和试验结果表明,该方法能实现多分量信号的分离,再根据各分离信号中的频谱,便能准确地得到轴承故障特征频率,有效地提取多种轴承故障信息,为故障诊断提供一种新的研究方向. Aimed at the non-stationarity of the signals,an algorithm of blind signal separation (BBS) was proposed based on Gabor transform and by combining the characteristics of time-frequency analysis and blind signal separation.In this algorithm,the characteristics of Gabor expansion with a linear time-frequency transform was used to find approximate mixed matrix from Gabor expansion coefficient,so that the separation of blind signals was realized.The results of numeric simulation and experiment showed that with this method,separation of multi-component signals could be implemented and the fault characteristic frequency of the bearing could be identified accurately on the basis of frequency spectrum of the separated signals and various fault information of the bearing were extracted effectively,providing a new research direction for fault diagnosis.
出处 《兰州理工大学学报》 CAS 北大核心 2013年第6期40-44,共5页 Journal of Lanzhou University of Technology
关键词 时频分析 GABOR变换 故障诊断 盲信号分离 time-frequency analysis Gabor transform fault diagnosis blind signal separation
  • 相关文献

参考文献10

  • 1QIN S R, ZHONG Y M. A new algorithm of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2006,20(8) : 1941-1952. 被引量:1
  • 2CHENG Junsheng, YU Dejie, YANG Yu. Research on the in trinsic mode function (IMF) criterion in EMD method [J]. Mechanical Systems and Signal Processing, 2006, 20 ( 4 ) : 817 -824. 被引量:1
  • 3COHEN L. Time-frequency distribution-a review [J]. Proceed- ings of the IEEE, 1989,77(7):941-981. 被引量:1
  • 4LEE J H, KIM J, KIM H J. Development of enhanced Wigner- Ville distribution function[J].Mechanical Systems and Signal Processing, 2001,13 (2) : 367-398. 被引量:1
  • 5李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,41(4):119-122. 被引量:27
  • 6CARDOSO J F, SOULOUMIAC A. Blind beamforming for non-Gaussian signal [J]. IEE-Proc, 1993,140(6) :362-370. 被引量:1
  • 7BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second-order statistics [J]. IEEE Transactions on Signal Processing, 1997, 45:434-444. 被引量:1
  • 8FEICHTINGER H G, STROHMER T. Gabor analysis and algorithms:theory and applications [M]. Boston: Birkhauser Nov, 1997. 被引量:1
  • 9申永军,张光明,杨绍普,张耕宁,王铁军.基于Gabor变换的盲信号分离方法[J].振动与冲击,2010,29(10):166-169. 被引量:7
  • 10何文雪,王林,谢剑英.一种基于时频分析的盲信号分离算法[J].上海交通大学学报,2005,39(12):2061-2065. 被引量:1

二级参考文献26

  • 1Cohen L. Time frequency distribution : a review [ J ]. Proc. of. IEEE, 1989, 77(7) : 941 -981. 被引量:1
  • 2Cardoso J F. High-order contrasts for independent component analysis[ J ]. Neural Computation, 1999, 11 ( 1 ) : 157 - 192. 被引量:1
  • 3Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[ M]. New York: John Wiley & Sons Inc, 2001. 被引量:1
  • 4Cichocki A, Amari S. Adaptive Blind Signal and Image Processing[ M ]. New York: John Wiley & Sons Inc, 2002. 被引量:1
  • 5Lee T W, Girolami M, Sejnowski T J. Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources [ J ]. Neural Computation, 1999, 11(2):417-441. 被引量:1
  • 6Zhong Z M, Chen J, Zhong P, et al. Application of the blind source separation method to feature extraction of machine sound signals [ J ]. The International Journal of Advanced Manufacturing Technology, 2006, 28:855 -862. 被引量:1
  • 7Roan M J, Erling J G, Sibul L H. A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis [ J ]. Mechanical Systems and Signal Processing, 2002, 16(5) : 719 -740. 被引量:1
  • 8Shen Y J, Yang S P. A new blind source separation method and its application to fault diagnosis of rolling bearing [ J ]. International Journal of Nonlinear Sciences and Numerical Simulation. 2006,7 (3) : 245 - 250. 被引量:1
  • 9杨福生.随机信号分析[M].北京:清华大学出版社,1990.. 被引量:22
  • 10Chen Z S, Yang Y M, Shen G J, et al. Early diagnosis of helicopter gearboxes based on independent component analysis. In: Processing of International Conference on Intelligent Maintenance Systems, Xi'an, China, 2003:291-295. 被引量:1

共引文献32

同被引文献25

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部