期刊文献+

一种自适应的非局部均值图像去噪算法 被引量:2

AN ADAPTIVE NON LOCAL MEANS IMAGE DENOISING ALGORITHM
下载PDF
导出
摘要 对Buades等人提出的非局部均值图像去噪算法进行改进。传统的方法在滤波参数定义上存在缺陷,为了解决这个问题,通过建立噪声方差与滤波系数的关系,提出解决噪声估计的方法。另外,根据小波系数的分布特点,利用GGD模型参数(尺度和形状参数)对系数进行拟合,并用GGD模型参数提出一种有效的噪声方差估计算法。实验结果表明,该噪声方差估计算法不仅能有效地估计噪声方差大小,而且使原有的非局部均值算法具有自适应性。这种自适应的非局部均值算法可以达到近似最优,具有鲁棒性和快速性,且算法精度高。 In this paper, we make the improvements on non-local means (NL-Means) algorithm introduced by Buades et al. Original NL- Means algorithm has the defect in filtering parameter definition. In order to solve this problem, we present the solution for noise estimation by establishing the relation between noise variance and the filtering parameter. Besides, according to the distribution feature of wavelet coeffi- cients, the Coefficients are fitted by using the generalised Gaussian distribution (GGD) model parameters (scale and shape parameters). We also propose an effective noise variance estimation method using GGD model parameters. Experimental results show that the noise variance es- timation method can effectively estimate the size of noise variance, it can also makes the original NL-means algorithm adaptive. Such adaptive NL-Means algorithm can reach approximately optimal value, and has robustness and fastness with high accuracy.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第12期43-47,51,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61171077) 江苏省高校自然科学研究项目(12KJB510025 12KJB510026) 交通部应用基础研究项目(2011-319-813-510) 南通市引进人才项目(03080415 03080416) 南通大学创新人才基金项目(2009)
关键词 非局部均值算法 滤波参数 GGD 小波域 NL-Means algorithm Filtering parameter GGD Wavelet domain
  • 相关文献

参考文献19

  • 1Tomasi C,Manduchi R. Bilateral filtering for gray and color image[A].1998.839-846. 被引量:1
  • 2Ramponi G. A rational edge-preserving smoother[A].1995.151-154. 被引量:1
  • 3Buades A,Coll B,Morel J M. A non-local algorithm for image denois-ing[A].2005.60-65. 被引量:1
  • 4Buades A. Image and film denoising by non-local means[D].Palma Universitat de les Illes Balears,2006. 被引量:1
  • 5Mahmoudi M,Sapiro G. Fast image and video denoising via nonlocal means of similar neigborhoods[J].{H}IEEE Signal Processing Letters,2005,(12):839-842. 被引量:1
  • 6Wang J,Guo Y W,Ying Y T. Fast non-local algorithm for im-age denoising[A].Atlanta,2006.1429-1432. 被引量:1
  • 7Manjo'n J V,Coupe'P,Mart1'-Bonmat1'L. Adaptive Non-Lo-cal Means Denoising of MR Images With Spatially Varying Noise Levels[J].Journal of Magnetic Resonce Imaging,2010.192-203. 被引量:1
  • 8Anand C S,Sahambi J S. Wavelet domain non-linear filtering for MRI denoising[J].{H}Magnetic Resonance Imaging,2010.842-861. 被引量:1
  • 9Efros A,Leung T. Texture synthesis by non parametric sampling[A].1999.1033-1038. 被引量:1
  • 10Buades A,Morel J M. A non-local algorithm for image denoising[A].San Diego,CA,USA,2005.60-65. 被引量:1

二级参考文献20

  • 1付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 2刘芳,刘文学,焦李成.基于复小波邻域隐马尔科夫模型的图像去噪[J].电子学报,2005,33(7):1284-1287. 被引量:13
  • 3Eng H L, Ma K K. Noise adaptive soft-switching median filter for image denoising [ A ] . In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing [ C ], Istanbul, Turkey, 2000: 2175-2178. 被引量:1
  • 4Khryashchev V V, Apalkov I V, Priorov A L,et al. Image denoising using adaptive switching median filter [ A ]. In: Proceedings of IEEE International Conference on Image Processing [ C ] , Genova, Italy, 2005: 117-120. 被引量:1
  • 5Yang P, Basir O A. Adaptive weighted median filter using local entropy for ultrasonic image de-noising [ A ]. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis [ C] ,Rome, Italy, 2003: 799-803. 被引量:1
  • 6Chen Y, Han C. Adaptive wavelet threshold for image denoising [J]. Electronics Letters, 2005, 41(10) : 586-587. 被引量:1
  • 7Donoho D L. De-noising by soft-thresholding [ J]. IEEE Transactions on Information Theory, 1995, 41 (3) : 613-627. 被引量:1
  • 8Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546. 被引量:1
  • 9Portilla J. Full blind denoising through noise covariance estimation using gaussian scale mixtures in the wavelet domain [ A ]. In: International Conference on Image Processing [ C ], Singapore, 2004 : 1217-1220. 被引量:1
  • 10Samsonov A A, Johnson C R. Noise-adaptive anisotropic diffusion filtering of MR1 images reconstructed by SENSE (sensitivity encoding) method [ A ]. In: Proceedings of IEEE International Symposium on Biomedical Imaging: Macro to Nano [ C ], Washington DC, USA, 2002:701-704. 被引量:1

共引文献43

同被引文献20

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部