期刊文献+

基于改进粒子滤波的声图像多目标跟踪方法 被引量:1

Acoustic Images Multi-Target Tracking Method Based on Modified Particle Filter
下载PDF
导出
摘要 针对利用声图像实现水下多目标跟踪问题,提出一种改进的粒子滤波多目标跟踪算法.通过引入联合概率数据关联算法,建立了联合概率数据关联-粒子滤波算法模型,使粒子权值中得以反映量测与目标轨迹间的关联概率,有效保证了各目标跟踪轨迹的连续性.采用了包含距离及角度的双重跟踪门得到确定矩阵,使跟踪精度得以提高.补充了轨迹起始及轨迹终结方法,以对跟踪过程进行完善.最后,通过水下多目标跟踪试验,对比分析了不同数据关联算法的试验结果,验证了所提方法的有效性,为基于前视声纳的多目标跟踪提供了一种更为有效的方式. Aimed at the problem of underwater multi-target tracking using forward looking sonar images, a modified particle filter (PF) multi-target tracking method was proposed. By introducing the joint probabi- listic data association (JPDA) method, a JPDA-PF algorithm was established. Thus particle weight could reflect the relationship between measurement and trajectory, which ensured the reliability and continuity of every trajectory. In order to increase the accuracy of tracking, the confirmation matrix was obtained by a double tracking threshold, including both relative distance and angle threshold. The methods of trajectory initialization and trajectory termination were complemented, which improved the whole tracking algo rithm. Contrast tests on multi-target tracking were conducted, and the better performance of JPDA-PF was verified. This paper provides a more effective method for multi-target tracking based on forward loo- king sonar.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第12期1848-1855,共8页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51009040\E091002 51309066) 国家高技术研究发展计划(863)项目(2011AA09A106) 中国博士后基金(2012M510928) 黑龙江省博士后基金(LBH-Z11205)
关键词 联合概率数据关联 粒子滤波 目标跟踪 前视声纳 joint probabilistic data association particle filter target tracking forward-looking sonar
  • 相关文献

参考文献15

  • 1Bruzzone G, Bruzzone G, Bibuli M, et al. Autono- mous Mine Hunting Mission for the Charlie USV [C]//OCEANS. Santander, Spain: IEEE Press, 2011: 1-6. 被引量:1
  • 2Williams D P. On optimal AUV track-spacing for under- water mine detection [C] //Robotics and Automation. Anchorage, A K: IEEE Press, 2010: 4755-4762. 被引量:1
  • 3Kimball P, Rock S. Sonar-based iceberg-relative AUV navigation [C] // Autonomous Underwater Ve- hicles. Woods Hole, M A: IEEE Press, 2008:1-6. 被引量:1
  • 4Pebody M, Sutton R. Autonomous underwater vehi cle collision avoidance [or under-ice exploration [J] Proceedings of the Institution of Mechanical Engineers, Part M .. Journal of Engineering for the Maritime Envi- ronment, 2008, 222(2): 53-66. 被引量:1
  • 5EI-Hawary F. Adaptive underwater target tracking via a generalized kalman filter [C] //Autonomous Un- derwater Vehicle Technology. Halifax, N S: IEEE Press, 1990:275-279. 被引量:1
  • 6Tena-Ruiz I, Petillot Y, Lane D, etal. Tracking ob- jects in underwater muhibeam sonar images [C]// lEE Colloquium on Motion Analysis and Tracking. England: IEEE Press, 1999: 11/1-11/7. 被引量:1
  • 7Sinha A, Ding Z, Kirubarajan T, etal. Track quality based multitarget tracking approach for global nea- rest-neighbor association [C] //Aerospace and Elec- tronic Systems, IEEE Transactions on. Adelphi, M D: IEEE Press, 2012: 1179-1191. 被引量:1
  • 8Braca P, Grasso R, Vespe M, et al. Application of the JPDA UKF to HFSW radars for maritime situa- tional awareness [ C] //Information Fusion ( FU- SION). Singapore: IEEE Press, 2012:2585-2592. Clark D E, Tena-Ruiz I, Petillo Y. Multiple target. 被引量:1
  • 9Clark D E, Tena-Ruiz I, Petillo Y. Multiple targettracking and data association in sonar images [C] // The 2006 IEEE Seminar on Target Tracking: Algo- rithms and Application. USA: IEEE Press, 2006: 147-156. 被引量:1
  • 10Lane D M, Chantler M J, Dai D. Robust tracking of multiple objects in sector-scan sonar image sequences using optical {low motion estimation [J]. Oceanic En- gineering, 1998, 23(1): 31-46. 被引量:1

二级参考文献21

  • 1石章松,王树宗,刘忠.自适应Kalman滤波器在水下被动目标跟踪中的应用[J].数据采集与处理,2004,19(2):150-154. 被引量:8
  • 2徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9-16. 被引量:123
  • 3Aidala V J,Hammel S.Utilization of Polar Coordinates for Bearing-Only Tracking[J].IEEE Transactions on Automatic Control,1983,28 (2):283-294. 被引量:1
  • 4Julier S J,Uhlmann J K.A New Extension of the Kalman Filter to Nonlinear System[A].In:The 11 Int.Sym.on AeroSense/Defence Sensing,Simulation and Controls[C],Orlando,Florida,USA,1997. 被引量:1
  • 5Julier S J,Uhlmann J,Durrant-Whyte H F.A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J].IEEE Transactions on Automatic Control,2000,45:477-482. 被引量:1
  • 6Wan E A,Merwe R.The Unscented Kalman Filter for Nonlinear Estimation[A].In Proc.of IEEE Symposium 2000[C].(AS-APCC),Lake Louise,Albert,Canada,2000. 被引量:1
  • 7Folkesson J, Leonard J. Feature tracking for under- water navigation using sonar[C] // Proceedings of the 2007 IEEE/RSJ International Conference on IntelligentRobots and Systems. USA: IEEE,2007: 3678-3684. 被引量:1
  • 8Lars H, An integrated environment for fast develop- ment and performance assessment of sonar image pro- cessing algorithms[C] // Proceedings of the 1996 Sym- posium on Autonomous Underwater Vehicle Technolo- gy. USA: IEEE, 1996 : 333-340. 被引量:1
  • 9Williams N, Lane D M, Chantler M J. Robust track- ing of multiple objects in sector:scan sonar image sequences using optical flow motion estimation[J]. Oceanic Engineering, 1998, 23(1):31-46. 被引量:1
  • 10Petillot Y, Tena-Ruiz I, Lane D M. Underwater ve- hicle obstacle avoidance and path planning using a multi-beam {orward sonar [J]. Oceanic Engineering, 2001, 26(2): 240-251. 被引量:1

共引文献9

同被引文献16

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2Yilmaz A, Javed O, Shah M. Object tracking: A survcy [ J ]. ACM Computing Surveys, 2006,38 (4) : 1-45. 被引量:1
  • 3Xu Xinyu, Li Baoxin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 3 ) : 838 -849. 被引量:1
  • 4Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[ C]//ICCV. 2011:263-270. 被引量:1
  • 5Zou Tengyue, Tang Xiaoqi, Song Bao. Improved Camshift tracking algorithm based on silhouette moving detection [ C]//The Third International Conference on Multimedia Information Networking and Security. 2011 : 11-15. 被引量:1
  • 6Wang Zhaowen, Yang Xiaokang, Xu Yi, et al. CamShift guided particle filter for visual tracking[J]. Pattern Recog- nition Letters, 2009,30 (4) : 407 -413. 被引量:1
  • 7Deilamani M J, Asli R N. Moving object tracking based on Mean-shift algorithm and feature fusion[ C]//2011 Interna- tional Symposium on Artificial Intelligence and Signal Pro- cessing. 2011:48-53. 被引量:1
  • 8Nouar O D, Ali G. Improved object tracking with Camshift algorithm[ C]//IEEE International Conference on Acous- tics, Speech and Signal Processing. 2006:657-660. 被引量:1
  • 9谭炽烈.多目标运动轨迹跟踪算法及DSP实现[D].杭州:浙江大学,2006. 被引量:1
  • 10陶永,王田苗,魏洪兴,陈殿生.基于Camshift和粒子滤波的老人陪护机器人人脸跟踪[J].中国机械工程,2009(16):1904-1908. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部