期刊文献+

Finite element verification on constitutive law of AZ31 magnesium alloy at 400℃ 被引量:2

AZ31镁合金400℃本构律之有限元验证分析(英文)
下载PDF
导出
摘要 A constitutive law is offered for an AZ31B-H24 Mg alloy within a strain rate range of 10-5-10-2 s-1 at a temperature of 400 ℃ The constitutive law, which is developed by curve fitting the tensile tests data, is expressed as a flow stress function of strain and strain rate. Furthermore, the constitutive law is embedded into a proper FE model to simulate the tensile experiments for the purpose of verifying reliability, where the incremental stress-strain relationships are calculated by an elastic-plastic theory in the finite element analysis (FEA). The results show that the stress-strain characteristics and the final deformed shapes in the FEA agree well with the experiments. In addition, the predicting analysis of constant-velocity stretch conditions and the verification of a free bulge forming experiment show that the proposed FE model is practicable for mechanical analysis on superplastic forming problems. A selective numerical method is offered for advanced superplastic analysis on AZ31 Mg alloys. 本文以曲线拟合方法,分析AZ31B-H24镁合金的单轴拉伸试验,针对材料在400℃温度下,应变率ε=10-5-10-2s-1范围之应力—应变关系曲线,找出一个以应变、应变率为函数的应力流方程式之本构模型,并将此模型掺入有限元(FEM)建构一合理的数值分析模式,仿真该单轴拉伸试验,以验证其可靠性。有限元分析(FEA)时以固体力学的弹-塑性理论来运算材料塑性流演化行为的应力增量-应变增量之关系。分析结果显示,FEA与单轴拉伸试验的应力—应变关系曲线,在各变形阶段上,二者皆具有相当不错的吻合性;且实验与FEA在极限应变状态下之杆件的变形形状,二者结果亦相当接近;本文并以此FEM分析模式预测固定速率之单轴拉伸案例,对该材料的吹制成型试验进行仿真,结果亦验证了本文所提出的本构模型拥有超塑性成型力学分析的实用性。本文对AZ31镁合金之超塑性力学分析提供了一个数值分析模式之参考。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3372-3382,共11页 中国有色金属学报(英文版)
关键词 AZ31 magnesium alloy constitutive law finite element verification AZ31镁合金 本构律 有限元验证
  • 相关文献

参考文献3

二级参考文献14

  • 1Chino Y, Mabuch M, Shimojma K, et al. Forging characteristics of AZ31 Mg alloy[J]. Mater Trans,2002, 43(3): 414-417. 被引量:1
  • 2Mordike B L. Magnesium and magnesium alloys[J].Light Metal, 2001, 51: 1-13. 被引量:1
  • 3Watanabe H, Tsutsui H, Mukai T, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallizaton[J]. Mater Trans, 2001,42(7): 1200- 1205. 被引量:1
  • 4Osakada K, Kawasaki T, Mori K, et al. A Method of Determining Flow Stress Under Forming Conditions[M]. Annals of the CIRP, 1981. 135- 138. 被引量:1
  • 5Osakada K, Nakano J, Mori K. Finite element method for rigid-plastic analysis of metal forming-formulation for finite deformation[J]. International Journal of Mechanical Science, 1982, 24(8): 459 - 468. 被引量:1
  • 6ASM. Magnesium and Magnesium Alloy[M]. ASM Specialty Handbook, 1999. 被引量:1
  • 7Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging[J]. International Journal of Machine Tools & Manufacture, 2002, 42:607-614. 被引量:1
  • 8Kohzu M, Yoshide F, Somekawa H, et al. Fracture mechanism and forming limit in deep-drawing of magnesium alloy AZ31 [J]. Mater Trans, 2001, 42 (7):1273 - 1276. 被引量:1
  • 9Watanabe H, Tsutsui H, Mukai T, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. International Journal of Plasticity, 2001, 17: 387 - 397. 被引量:1
  • 10Doege E, Droder KI Development of a Formulation to Describe the Work Softening Behaviour of Magnesium Sheets for Heated Deep Drawing Process[M]. Annals of the CIRP, 2001. 被引量:1

共引文献108

同被引文献29

  • 1PARAMSOTHY M, HASSAN S F, SRIKANTH N, GUPTA M. Adding carbon nanotubes and integrating with AA5052 aluminium alloy core to simultaneously enhance stiffness, strength and failure strain of AZ31 magnesium alloy [J]. Composites Part A-Applied Science and Manufacturing, 2009, 40(9): 1490-1500. 被引量:1
  • 2PARAMSOTHY M, HASSAN S F, SRIKANTH N, GUPTA M. Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes [J]. Journal of Nanoscience and Nanotechnology, 2010, 10(2): 956-964. 被引量:1
  • 3MURALIDHARAN P, SYED F H, NGUYEN Q B, NARASIMALU S, MANOJ G. Selective enhancement of tensile/compressive strength and ductility of AZ31 magnesium alloy via nano-Al203 reinforcement integration method alteration [J]. Materials Science Forum, 2009, 618-619: 423-427. 被引量:1
  • 4ZHANG H, HUANG G S, ROVEN H J, WANG L, PAN F. Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets [J]. Materials & Design, 2013,50(9): 667-673. 被引量:1
  • 5SCRUBY C B. An introduction to acoustic emission [J]. Journal of Physics E-Scientific Instruments, 1987, 20(8): 946-953. 被引量:1
  • 6CHANG H, HAN E H, WANG J Q, KE W. Acoustic emission study of corrosion fatigue crack propagation mechanism for LY12CZ and 7075-T6 aluminum alloys [J]. Journal of Materials Science, 2005, 40(21): 5669-5674. 被引量:1
  • 7WANG Z F, ZHU Z, KE W. Behavior of acoustic emission for low-strength structural steel during fatigue and corrosion fatigue [J]. Metallurgical Transactions A, 1991,22(11): 2677-2680. 被引量:1
  • 8WADLEY R N G, SCRUBY C B, SHRIMPTON G. Quantitative acoustic emission source characterisation during low temperature cleavage and intergranular fracture [J]. Acta Metallurgica, 1981, 29(2): 399-414. 被引量:1
  • 9YUJG, PAUL Z, BORIS Z, JUAN C. Prediction of fatigue crackgrowth in steel bridge components using acoustic emission [J]. Journal of Constructional Steel Research, 2011, 67(8): 1254-1260. 被引量:1
  • 10AGGELIS D G, KORDATOS E Z, MATIKAS T E. Acoustic emission for fatigue damage characterization in metal plates [J]. Mechanics Research Communications, 2011, 38(2): 106-110. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部