期刊文献+

逼近法确定球形簇的球心与半径 被引量:3

Determination of Center and Radius of Clusters with Approaching Method
下载PDF
导出
摘要 基于欧氏距离的聚类方法往往会得到球形簇,直接计算球形簇的球心及半径有很大困难,提出了一种算法以逐渐逼近的方式确定这两个参数。理论分析和实验结果都证明该算法能够达到精确度要求。 The clustering method based on Euclidean distance usually leads to spherical clus- ter. It is very difficult to compute the center and radius of the spherical cluster. Proposes a algorithm to determine the two parameters with gradually approaching method. The theoretical analysis and ex- perimental results both show that the algorithm reaches the demand of precision.
作者 韩海
出处 《江汉大学学报(自然科学版)》 2013年第5期62-64,共3页 Journal of Jianghan University:Natural Science Edition
基金 武汉市科技局基金资助项目(201250499145-21)
关键词 球形簇 算法 逼近 精确度 spherical cluster algorithm approach precision
  • 相关文献

参考文献4

二级参考文献26

  • 1王进.聚类分析中的距离与变量选择[J].山西财经大学学报,2007,29(z1). 被引量:4
  • 2曲吉林.一种改进的求凸多边形直径的最优算法[J].计算机工程与应用,2005,41(26):94-96. 被引量:3
  • 3Preparata F P,Shamos M I.Computational geometry an introduction[M].New York:Springer-Verlag,1985. 被引量:1
  • 4ESTER M, KRIEGEL H P, SANDER J. A density-based algorithm for discovering clusters in large spatial databases with noise[ C]// Proceedings of the 2nd International Conference on Knowledge Dis- covery and Data Mining. Oregon, Portland: AAAI Press, 1996: 226 - 231. 被引量:1
  • 5XIA CHENYI, HSU WYNNE, LEE MONGLI, et al. BORDER: ef- ficient computation of boundary points[ J]. Knowledge and Data En- gineering, 2006, 18(3) : 289 -303. 被引量:1
  • 6QIU BAOZHI, YUE FENG, SHEN JUNYI. BRIM: A efficient boundary points detecting algorithm[ C]// Proceedings of Advances in Knowledge Discovery and Data Mining. Berlin: Springer-Verlag, 2007:761-768. 被引量:1
  • 7NOSOVSKIY G V, LIU DONGQUAN, SOURINA O. Automatic clustering and boundary detection algorithm based on adaptive influ- ence function[ J]. Pattern Recognition, 2008, 41 (9) : 2757 - 2776. 被引量:1
  • 8BARBARA D, COUTO J, LI YI. COOLCAT: an entropy-based algorithm for categorical clustering [ C ]// Proceedings of the eleventh International Conference on Information and Knowledge Management. New York: ACM Press, 2002:4-9. 被引量:1
  • 9FRED A L N, JAIN A K. Data clustering using evidence accumulation [ C ]// Proceedings of the 16th International Conference on Pattern Recognition. Washington, DC : IEEE Computer Society, 2002 : 276 - 280. 被引量:1
  • 10FRED A L N, JAIN A K. Evidence accumulation clustering based on the k-means algorithm [ C ]// Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition. London : Springer-Verlag, 2002:303 - 333. 被引量:1

共引文献51

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部