期刊文献+

Banach空间中一类新的几何常数

A New Class of Geometric Constants in Banach Spaces
下载PDF
导出
摘要 对Banach空间的一致非方性质进行了刻画,引入一类几何常数H(X)和h(X)并得到常数H(X)和凸性模δX(ε)的关系等式,且证明了Banach空间一致非方的充分必要条件是H(X)不超过2。另外,计算了一些具体Banach空间上常数H(X)和h(X)的精确值。 The uniform nonquareness of a Banach space was characterized in this paper. Two new geometric constants H( X) and h( X) were introduced. And the relation equation between H( X) and the modulus of convexity δX( ε) was obtained. It is also proved that a Banach space is uniformly nonsquare if and only if the value of H( X) is less than 2. The exact values of H( X) and h( X) for some concrete Banach spaces are computed.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2014年第1期79-82,7,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(11126284) 河南省基础与前沿技术研究计划项目(102300410012)
关键词 BANACH空间 调和平均 一致非方 Banach space harmonic mean uniform nonquareness
  • 相关文献

参考文献12

  • 1James R C. Uniformly Non-square Banach Spaces[ J]. Ann of Math,1964,80 :542 - 550. 被引量:1
  • 2Schaffer J J. Geometry of Spheres in Normed Spaces [ M]. New York : Dekker, 1976. 被引量:1
  • 3Gao J. The Uniform Degree of the Unit Ball of a Banach Space[ J]. Nanjing Daxue Xuebao, 1982 ,1 : 14 - 28. 被引量:1
  • 4Casini E. About Some Parameters of Normed Linear Space[ J]. Atti Accad Linzei Rend Fis Ser, 1986 ,80( VIII) :11 - 15. 被引量:1
  • 5杨长森,郑亚男,王亚敏.广义高继常数的一些性质[J].河南师范大学学报(自然科学版),2011,39(1):6-9. 被引量:2
  • 6Yang C S,Li H Y. An Inequality On Jordan - Vonneuma-Nnconstant and James Constant On Zp, qSPACE[ J] . Journal ofMathematical Inequalities, 2013 ,7 (1) :97 - 102. 被引量:1
  • 7张海霞,关晓红,杨长森.常数H(a,X)与一致正规结构[J].华中师范大学学报(自然科学版),2011,45(3):363-365. 被引量:1
  • 8Baronti M , Casini E, Papini P L. Triangles Inscribed in Semicircle, in Minkowski Plane,and in Normed Spaces[ J]. J MathAnal Appl,2000,252:121 -146. 被引量:1
  • 9Alonso J,Llorens-Fuster E. Geometric Mean and Triangles Inscribed in a Semicircle in Banach Spaces [ J]. J Math AnalAppl,2008,340:1271 - 1283. 被引量:1
  • 10Kato M , Maligranda L,Takahashi Y. On James and Jordan-von Neumann Constants and the Normal Structure Coefficient ofBanach Spaces[ J]. Studia Math ,2001 ,144 :275 - 295. 被引量:1

二级参考文献14

  • 1Gao J,Saejung S.Normal structure and the generalized James and Zbganu constants[J].Nonlinear Analysis,2009,71:3047-3052. 被引量:1
  • 2Gao J.A Pythagorean approch in Banach spaces[J].J Inequal Appl,2006,94982:1-11. 被引量:1
  • 3Dhompongsa S,Pirasangjun P,Saejung S.Generalized Jordan-Von Neumann constants and uniform normal structure[J].Bull Austral Math Soc,2003,67:225-240. 被引量:1
  • 4Dhompongsa S,Kaewkhao A,Tasena S.On a generalized James constant[J].Math Ann,2003,285:419-435. 被引量:1
  • 5Saejung S.Sufficient conditions for uniform normal structure of Banach spaces and their duals[J].Math Anal Appl,2007,330(1):597-604. 被引量:1
  • 6Khamsi M A.Uniform smoothness implies super-normal structure property[J].Nonlinear Anal,1992,19:1063-1069. 被引量:1
  • 7Saejung S.The characteristic of convexity of Banach space and normal structure[J].Math Anal Appl,2008,337(1):123-129. 被引量:1
  • 8Gao J.On some geometric papameters in Banach spaces[J].Math Anal Appl,2007,334:114-122. 被引量:1
  • 9Kirk W A. A fixed point theorem for mappings which do not increase distances [J]. Amer Math Monthly, 1965, 72: 1004-1006. 被引量:1
  • 10Dhompongsa S, Piraisangjun P, Saejung S. On a generalized Jordan-yon Neumann constants and uniform structure [J].Bull Austral Math Soc, 2003, 67: 225-240. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部