期刊文献+

财务困境预警的二阶段模型构建与应用

Construction and Application of Two-Stage Model for Financial Distress Early Waring
下载PDF
导出
摘要 模糊神经网络汇集神经网络和模糊逻辑的优点,能有效避免神经网络的"黑箱"操作,但存在"维数爆炸"现象。将粗糙集和模糊神经网络有机集成,构建财务困境预警的二阶段模型:第一阶段利用粗糙集知识约简对数据集降维消冗,提取最优指标集;第二阶段以最优指标集设计基于模糊神经网络的财务困境预警模型。该模型融合粗糙集和模糊神经网络的特点,能提高网络结构的精练性、启发性和透明性。应用实例的结果表明该模型能有效克服"维数灾难",避免数据噪声引起的模型过度适应,提高模型预测准确性。 Fuzzy neural network which brings together the advantages of neural network and fuzzy logic, can avoid the "black-box" operation but ex- ist the curse of dimensionality. Proposes a two-stage model for financial distress early warning by integrated the rough set theory into fuzzy neural network. In the first stage, extracts an optimal index set by using the knowledge reduction of rough set to reduce dimension- ality and eliminate redundant of the data set; designs a fuzzy neural network model for financial distress early warning based on the opti- mal index set which is extracted in the first stage. The new model can improve the conciseness, heuristics and transparency of network structure by combined rough set into fuzzy neural network. The application result indicates that the model, which can overcome the "curse of dimeusionality" and avoid the over fitting that caused by data noise, can obtain much higher accuracy in financial distress prediction.
作者 黄福员
出处 《现代计算机》 2013年第23期7-11,共5页 Modern Computer
基金 广东省自然科学基金项目(No.10452404801006352) 广东高校优秀青年创新人才培育项目(No.WYM10103)
关键词 财务困境预警 二阶段模型 粗糙集理论 模糊神经网络 Financial Distress Early Warning Two-Stage Model Rough Set Theory Fuzzy Neural Networks
  • 相关文献

参考文献14

  • 1Jae H. Min, Young- Chan Lee. Bankruptcy Prediction Using Support Vector Machine with Optimal Choice of Kernel Function Parame- ters[J]. Expert Systems with Applications, 2005, 28:603-614. 被引量:1
  • 2Arash Bahrammirzaee. A Comparative Survey of Artificial Intelligence Applications in Finance: Artificial Neural Networks, Expert Sys- tem and Hybrid Intelligent Systems[J]. Neural Comput & Applic,2010,19:1165-1195. 被引量:1
  • 3Hamdani Tarek M., Alimi Adel M., Karray Fakhri. Enhancing the Structure and Parameters of the Centers for BBF Fuzzy Neural Net- work Classifier Construction Based on Data Structure[A]. Proceedings of the International Joint Conference on Neural Networks[C]. Piscataway NJ: IEEE, 2008:3174-3180. 被引量:1
  • 4Kosko B. Fuzzy Associative Memories. In: Kondel A(ed)[A]. Fuzzy Expert System Rea.ding. MA: Addison Weley, 1987. 被引量:1
  • 5Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Science, 1982( 11 ):341-356. 被引量:1
  • 6Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Boston:Kluwer Academic Publishers, 1991. 被引量:1
  • 7张文修等编著..粗糙集理论与方法[M].北京:科学出版社,2001:224.
  • 8HU Ke-yun, LU Yu-chang, SHI Chun-yi. Feature Ranking in Rough Sets[J]. AI Communications, 2003, 16(1 ): 41-50. 被引量:1
  • 9Akagi T., Sugeno M. Fuzzy Identification of Systems and Its Application to Modeling and Control[J]. IEEE Transactions on Systems, Man, and, Cybernetics, 1985,15(1): 116-132. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle Swarm Optimization[A]. Proceedings of IEEE International Conference on Neural Networks[C]. Pis- caraway NJ:IEEE, 1995:1942-1948. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部