期刊文献+

SVDD在间歇过程监测中的应用研究 被引量:4

Research on the appliance of support vector data description method in batch process monitoring
原文传递
导出
摘要 针对间歇生产过程中,采集的数据存在非高斯、非线性的特征,本文将支持向量数据描述(Support Vector Data Description,SVDD)的方法应用到间歇过程故障监测中。首先,将数据按照批次展开并进行标准化,再按照变量展开;然后,建立SVDD模型,应用核函数求出模型半径R(?)对新的待检测样本,先计算其与模型中心的距离,再与半径比较,判断它是否正常。因为SVDD可以利用核函数替代向量内积的计算,所以能够解决非高斯、非线性数据的检测问题。最后,在青霉素发酵过程监测的成功应用,验证了该方法的有效性、准确性。 For batch production process, non-gaussian and nonlinear characteristics also exist dataset. Support vector data description (SVDD) method is used in this paper. Firstly, the dataset is first unfolded though the batch and standardization should also be performed nextly, then it is re-unfold through the variable direction. After that, a SVDD model can be built and kernel function is applied to solve the radius of the model, for the new samples to be detected, calculating the distance to the model center, comparing with the radius and then which can be determined whether it is normal. Because the SVDD could use kernel function instead of inner product of vector computation, it can solve the detection problem of nonlinear and non-gaussian data. Finally, in the monitoring of the successful application of penicillin fermentation process, SVDD is verified to be effective and accurate.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第12期1401-1405,共5页 Computers and Applied Chemistry
基金 国家自然科学基金重点项目(61034006) 国家自然科学基金项目(61174119)
关键词 间歇过程 非高斯 非线性 过程监测 支持向量数据描述 batch process non-gaussian nonliner process monitoring SVDD
  • 相关文献

参考文献3

二级参考文献15

  • 1Kourti T, Nomikos P and MacGregor JF. Analysis, monitoring and fault diagnosis of batch processes using multi-block and multi-way PLS. J Proc Cont, 1995, 5:277 -284. 被引量:1
  • 2Undey C, Tatara E and Cinar A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. J of Biotechnology, 2004, ( 108 ) :61 - 67. 被引量:1
  • 3Undey C and Cinar A. Statistical monitoring of multistage, multiphase batch processes. IEEE Control Systems Magazine, 2002, 10:40 - 52. 被引量:1
  • 4Lee JM, Yoo CK and Lee IB. Fault detection of batch processes using multi-way kernel principal component analysis. Comp & Che Eng, 2004, 28:1837- 1847. 被引量:1
  • 5Lee JM, Yoo CK and Lee IB. On-line batch process monitoring using a consecutively updated multi-way principal component analysis model. Comp & Che Eng, 2003, 27:1903 -1912. 被引量:1
  • 6Birol G and Cinar A. A modular simulation package for fed-batch fermentation: Penicillin production. Comp & Che Eng, 2002, 26:1553 - 1565. 被引量:1
  • 7Wang HW. Partial Least-Squares Regression-Method and Applications. Beijing:National-defence Industry Press, 1999, 4. 被引量:1
  • 8Zhang J. Multivariate Statistical Process Control. Beijing:Chemical Industry Press, 9000, 8, 被引量:1
  • 9MacGregor JF and Kourti T. Statistical process control of multivariate processes. Control Eng Practice, 1995, 3(3) :403 -414. 被引量:1
  • 10Wise BM and Gallagher NB. The process chemometrics approach to process monitoring and fault detection. J Proc Cont, 1996, 6(6) :329 - 348. 被引量:1

共引文献64

同被引文献37

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部