期刊文献+

基于三剪统一屈服准则受内压弯管塑性极限载荷分析 被引量:2

Analyzing Plastic Limit Load of Elbow Pipe under Internal Pressure with Triple-shear Unified Yield Criterion
下载PDF
导出
摘要 在变壁厚椭圆截面弯管应力分析的基础上,运用三剪统一屈服准则,对承受内压作用的弯管进行了极限载荷分析,推导出考虑弯管截面壁厚变化和弯管椭圆度的变壁厚椭圆弯管的塑性极限压力统一解析解。弯管的极限载荷随着弯管壁厚和弯管椭圆度的不同而变化。 Based on the bending stress analysis of the elliptical cross section of an elbow pipe with wall thickness variation, we use the triple-shear yield criterion to derive the plastic limit load formula that considers the variation of the wall thickness of the elbow pipe under external pressure and the bending elliptical variation. The plastic limit load of the elbow pipe changes with the wall thickness and ovality of the elbow pipe.
机构地区 江苏理工学院
出处 《机械科学与技术》 CSCD 北大核心 2013年第12期1841-1845,共5页 Mechanical Science and Technology for Aerospace Engineering
关键词 塑性极限载荷 统一解析解 弯管 三剪统一屈服准则 calculations elastoplasticity load limits pressure vessels pressure stress analysis yield stress plastic limit load elbow pipe triple-shear unified yield criterion
  • 相关文献

参考文献9

二级参考文献29

共引文献44

同被引文献27

  • 1段志祥,沈士明.内压作用下弯管塑性极限载荷分析与试验研究[J].压力容器,2004,21(8):1-4. 被引量:16
  • 2胡小荣,俞茂宏.岩土类介质强度准则新探[J].岩石力学与工程学报,2004,23(18):3037-3043. 被引量:33
  • 3胡小荣,林太清.三剪屈服准则及其在极限内压计算中的应用[J].中国有色金属学报,2007,17(2):207-215. 被引量:14
  • 4俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.. 被引量:36
  • 5Zhu X K, Leis B N. Evaluation of burst pressure prediction models for line pipes[J]. International Journal of Pressure Vessels and Piping, 2012, 89: 85-97. 被引量:1
  • 6Zhu X K, Leis B N. Average shear stress yield criterion and its application to plastic collapse analysis of pipelines[J]. International Journal ofPressureVesselsandPiping, 2006, 83(9): 663-671. 被引量:1
  • 7Chaix R. Factors influencing the strength differential of high-strength stcels[J].MctallurgicalTransactions, 1972, 3(2): 365-371. 被引量:1
  • 8Drucker D C. Plasticity theory, strength-differential(SD) phenomenon, and volume expansion in metals and plastics[J].Metallurgical Transactions, 1973, 4(3): 667-673. 被引量:1
  • 9Rauch G C, Leslie W C. The extant and nature of the strength-differential effect in steels[J]. Metallurgical Transactions 1972, 3(2): 377-389. 被引量:1
  • 10Li X W, Zhao J H, Wang Q Y. Unified stress solution for sheet forming[J]. Advanced Materials Research, 2012, 463/464: 629-633. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部