摘要
高空间分辨率遥感数据由于存在大量同物异谱和异物同谱现象。传统的方法难以对城郊的居民区取得满意的提取效果。在高空间分辨率遥感影像对象提取研究中引入子图表示方法,通过综合Contourlet变换的多尺度、多方向分解能力,以及灰度共生矩阵的统计能力,实现纹理特征的合理表达,较好地描述遥感影像对象的纹理特征。利用多核学习,得到反应各特征区分能力的特征权值。实验以QuickBird影像为数据样本,实验结果表明提出算法有效地实现城郊居民区提取。
Traditional extraction algorithmof residential areaextraction in suburenvironmendo nogive the desired resuldue to large within-classpectral variationand between-classpectral confusionthacharacterize the high spatial resolution remotely sensed data. The Subgraph Method waintroduced foobjectextraction from high spatial resolution remotely sensed imagery. Reasonable expression of texture featurewaachieved by integrating the multi-scale multi-directional capabilitieof Contourletransform and the statistical capacity of GLCM, which can correctly describe the featureof remote sensing imageobjects. Weightto show distinguishing ability of each fea- ture wacalculated by the Multiple kernel learning(MKL) methods. case study taking QucikBird imagery asample data, provethe effectivenesof the innovative method adopted in thiresearch.
出处
《科学技术与工程》
北大核心
2013年第33期10017-10020,共4页
Science Technology and Engineering
基金
国家自然科学基金资助项目(40871206)
福建省教育厅科技研究资助项目(JA13220
JB11116)资助