期刊文献+

基于纹理特征的高分辨率影像城郊居民区提取方法研究 被引量:1

The Research on Suburb Residential Areas Extraction of High Spatial Resolution Remotely Sensed Imagery Based on Texture Features
下载PDF
导出
摘要 高空间分辨率遥感数据由于存在大量同物异谱和异物同谱现象。传统的方法难以对城郊的居民区取得满意的提取效果。在高空间分辨率遥感影像对象提取研究中引入子图表示方法,通过综合Contourlet变换的多尺度、多方向分解能力,以及灰度共生矩阵的统计能力,实现纹理特征的合理表达,较好地描述遥感影像对象的纹理特征。利用多核学习,得到反应各特征区分能力的特征权值。实验以QuickBird影像为数据样本,实验结果表明提出算法有效地实现城郊居民区提取。 Traditional extraction algorithmof residential areaextraction in suburenvironmendo nogive the desired resuldue to large within-classpectral variationand between-classpectral confusionthacharacterize the high spatial resolution remotely sensed data. The Subgraph Method waintroduced foobjectextraction from high spatial resolution remotely sensed imagery. Reasonable expression of texture featurewaachieved by integrating the multi-scale multi-directional capabilitieof Contourletransform and the statistical capacity of GLCM, which can correctly describe the featureof remote sensing imageobjects. Weightto show distinguishing ability of each fea- ture wacalculated by the Multiple kernel learning(MKL) methods. case study taking QucikBird imagery asample data, provethe effectivenesof the innovative method adopted in thiresearch.
作者 许锐
出处 《科学技术与工程》 北大核心 2013年第33期10017-10020,共4页 Science Technology and Engineering
基金 国家自然科学基金资助项目(40871206) 福建省教育厅科技研究资助项目(JA13220 JB11116)资助
关键词 遥感影像 纹理特征 CONTOURLET变换 灰度共生矩阵 remotely sensed imagery texture features contourlet transformmatrixgray level co-occurrence
  • 相关文献

参考文献13

  • 1Hill P R,Canagarajah C N,Bull D R.Texture gradient based watershed segmentation.IEEE International Conference on Acousties,SPeeeh and Signal Proeessing,2002,Ⅳ:3381-3384. 被引量:1
  • 2Clausi D A,Deng H.Design-based texture feature fusion using gabor filters and Co-occurrence probabilities.IEEE Transactions on Image Processing,Jul,2005 ;14 (7):925-936. 被引量:1
  • 3黄昕,张良培,李平湘.基于小波的高分辨率遥感影像纹理分类方法研究[J].武汉大学学报(信息科学版),2006,31(1):66-69. 被引量:19
  • 4叶志伟,周欣,郑肇葆,赖旭东.产生“Tuned”模板的的混沌粒子群算法[J].武汉大学学报(信息科学版),2013,38(1):10-14. 被引量:2
  • 5Tuceryan M,Jain A K.Handbook of pattern recognition and computer vision,Chapter 2:texture analysis.Singapore:World Scientific,1993. 被引量:1
  • 6Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolution image representation.IEEE Transactions on Image Processing,2005 ; 14(12):2091-2106. 被引量:1
  • 7程起敏,杨崇俊,邵振峰.基于多进制小波变换的渐进式纹理图像检索[J].武汉大学学报(信息科学版),2005,30(6):521-524. 被引量:10
  • 8Rivera M,Ocegueda O,Marroquin J L.Entropy-controlled quadraticmarkov measure field models for efficient image segmentation.IEEE Transactions on Image Processing,2007 ;16(12):3047-3057. 被引量:1
  • 9闫敬文,屈小波著..超小波分析及应用[M].北京:国防工业出版社,2008:225.
  • 10Do M N,Vetterl M.The contourlet transform:an efficient directional multiresolution image representation.IEEE Trans on Image Processing,2005 ;14(12):2091-2106. 被引量:1

二级参考文献21

  • 1郑肇葆,潘励,虞欣.产生“Tuned”模板的Bayesian Networks方法[J].武汉大学学报(信息科学版),2006,31(4):304-307. 被引量:8
  • 2高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 3朱长青,杨晓梅.具有更佳分辨率小波分解的遥感影像纹理分类[J].地理研究,1997,16(1):53-59. 被引量:11
  • 4Kokare M,Chatterji B N,Biswas P K.M-band Wavelet Based Texture Features for Content Based Image Retrieval. Electronics and Electrical Communication Engineering Department, 2002. 被引量:1
  • 5Uller H M, Uller W M, Squire D M, et al.Performance Evaluation in Content-based Image Retrieval: Overview and Proposals. Pattern Recognition Letters,2001,22(5):593-601. 被引量:1
  • 6Chitre Y, Dhawan A P. M-Band Wavelet Discrimination of Natural Textures.Pattern Recognition, 1999,32(5) :773-789. 被引量:1
  • 7Acharyya M, Kundu M K. An Adaptive Approach to Unsupervised Texture Segmentation Using M-Band Wavelet Transform. Signal Processing, 2001,81(7):1337-1356. 被引量:1
  • 8MyintS W.Lam N S N,Tylor J.An Evaluation of Four Different Wavelet Decomposition Procedures for Spatial Feature Discrimination Within and Around Urban Areas[J].Transactions in GIS.2002.6(4):403-429. 被引量:1
  • 9You J,Cohen H A. Classification and Segmentation of Rotated and Scaled Textured Image Using Texture "Tuned" Masks[J].Pattern Recognition,1993,(02):245-258. 被引量:1
  • 10Kennedy J,Eberhart R. Particle Swarm Optimization[A].Piscataway,NJ,1995. 被引量:1

共引文献28

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部