期刊文献+

青蒿二烯功能模块与酵母底盘的适配性 被引量:2

Fitness of Amorphadiene Production Functional Modules and Yeast Chassis
下载PDF
导出
摘要 设计构建人工酿酒酵母细胞合成青蒿二烯的关键是使外源功能模块与底盘细胞适配,本文通过对外源功能模块中的载体、蛋白表达和启动子进行优化,以提高功能模块与底盘细胞的适配性.使用着丝粒载体和附加型载体构建了2种青蒿二烯功能模块,在过表达甲羟戊酸(MEV)途径中关键基因(截短的3-羟基-3-甲基戊二酰辅酶A还原酶基因tHMGR及法尼基焦磷酸合酶基因ERG20)的2种酵母底盘中进行适配,得到适配性较好的人工合成细胞,其产量为11.2 mg/L;将青蒿二烯合酶基因(ADS)与ERG20进行融合构建融合蛋白功能模块,在选定底盘中适配性进一步提高,青蒿二烯的产量提升至17.5 mg/L;采用不同强度的启动子(TDH3p,TEF1p和PGK1p)对融合蛋白功能模块进行调控,最终得到功能模块与底盘间适配关系更好的人工合成细胞,其产量提升到71.8 mg/L. The key to construct artificial yeast cells to produce amorphadiene is the fitness of heterologous functional modules and chassis. The fitness of functional modules and chassis were studied by optimization of vectors, protein expression and promoters in the functional modules. Two functional modules constructed with centromere vector and episomal vector were introduced into two engineered chassis overexpressing key genes ( a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase gene tHMGR and farnesyl diphosphate synthase gene ERG20) in mevalonate(MEV) pathway, and the highest amorphadiene production was 11.2 mg/L in the arti- ficial cell with better fitness. Amorphadiene synthase gene ADS and ERG20 were fused to construct fusion en- zyme modules, and the fitness with the selected chassis were improved, resulted in a higher amorphadiene pro- duction of 17.5 mg/L. With promoter engineering( TDH3p, TEFlp, PGKlp) in the fusion enzyme modules, an artificial cell with a better fitness of functional module and chassis reached a 71.8 mg/L amorphadiene pro- duction.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第12期2765-2771,共7页 Chemical Journal of Chinese Universities
基金 国家'八六三'计划项目(批准号:2012AA02A701)资助
关键词 青蒿二烯 酵母底盘 融合蛋白 功能模块 适配 Amorphadiene Yeast chassis Fusion enzyme Functional module Fitness
  • 相关文献

参考文献32

  • 1刘夺,杜瑾,赵广荣,元英进.合成生物学在医药及能源领域的应用[J].化工学报,2011,62(9):2391-2397. 被引量:21
  • 2Martin V. J., Pitera D. J., Withers S. T., Newman J. D., Keasling J. D., Nat. Biotechnol., 2003, 21(7), 796—802. 被引量:1
  • 3Babiskin A. H., Smolke C. D., Mol. Syst. Biol., 2011, 7, 471. 被引量:1
  • 4Partow S., Siewers V., Bjorn S., Nielsen J., Maury J., Yeast, 2010, 27(11), 955—964. 被引量:1
  • 5Fang F., Salmon K., Shen M. W., Aeling K. A., Ito E., Irwin B., Tran U. P., Hatfield G. W., Da S. N., Sandmeyer S., Yeast, 2011, 28(2), 123—136. 被引量:1
  • 6Westfall P. J., Pitera D. J., Lenihan J. R., Eng D., Woolard F. X., Regentin R., Horning T., Tsuruta H., Melis D. J., Owens A., Fickes S., Diola D., Benjamin K. R., Keasling J. D., Leavell M. D., McPhee D. J., Renninger N. S., Newman J. D., Paddon C. J., Proc. Natl. Acad. Sci., 2012, 109(3), E111—E118. 被引量:1
  • 7Ro D. K., Paradise E. M., Ouellet M., Fisher K. J., Newman K. L., Ndungu J. M., Ho K. A., Eachus R. A., Ham T. S., Kirby J., Chang M. C., Withers S. T., Shiba Y., Sarpong R., Keasling J. D., Nature, 2006, 440(7086), 940—943. 被引量:1
  • 8Paradise E. M., Kirby J., Chan R., Keasling J. D., Biotechnol. Bioeng., 2008, 100(2), 371—378. 被引量:1
  • 9Albertsen L., Chen Y., Bach L. S., Rattleff S., Maury J., Brix S., Nielsen J., Mortensen U. H., Appl. Environ. Microbiol., 2011, 77(3), 1033—1040. 被引量:1
  • 10Asadollahi M. A., Maury J., Schalk M., Clark A., Nielsen J., Biotechnol. Bioeng., 2010, 106(1), 86—96. 被引量:1

二级参考文献35

  • 1吴泰相,刘关键,张鸣敏,王覃,倪娟,魏家富,周礼鲲,段鑫,陈小燕,郑洁,乔杰奇.青蒿素类药物预防日本血吸虫感染效果及安全性的系统评价[J].中华医学杂志,2003,83(14):1219-1224. 被引量:11
  • 2徐继红,章元沛.二氢青蒿素与青蒿琥酯的抗孕作用[J].药学学报,1996,31(9):657-661. 被引量:25
  • 3Efferth A, Dunstan H, Sauerbrey A, et al. The antimalarial artesunate is also active against cancer [ J ]. Int J Oneol, 2001,18:767 - 773. 被引量:1
  • 4Martin VJJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherich coli for production of terpenoids [ J]. Nat Biotechnol, 2003,21:796 - 803. 被引量:1
  • 5Newman JD, Marshall J, Chang M, et al. High-level production amorpha-d, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli [ J ]. Biotech Bioeng, 2006,95 : 684 - 691. 被引量:1
  • 6Lindahl AL, Olsson ME, Mercke P, et al. Production of the artemisinin precursor amorpha-4, 11-diene by engineered Saccharomyces cerevisiae [ J ]. Biotechnol Lett, 2006,28:571 - 580. 被引量:1
  • 7Ro DK, Paradise EM, Ouellet M,et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [ J ]. Nature, 2006,440:940 - 943. 被引量:1
  • 8Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual [ M ]. 3rd ed. New York: Cold Spring Harbor Lab Press, 2001. 被引量:1
  • 9Burke D, Dawson D, Stearns T. Methods in Yeast Genetics [ M ]. New York: Cold Spring Harbor Laboratory Press, 2000. 被引量:1
  • 10Wallaart TE, Bouwmeester H J, Hille J, et al. Amorpha- 4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin [ J ]. Planta, 2001 , 212: 460 - 465. 被引量:1

共引文献30

同被引文献30

  • 1Jun-Li Han,Ben-Ye Liu,He-Chun Ye,Hong Wang,Zhen-Qlu Li,Guo-Feng Li.Effects of Overexpression of the Endogenous Farnesyl Diphosphate Synthase on the Artemisinin Content in Artemisia annua L.[J].Journal of Integrative Plant Biology,2006,48(4):482-487. 被引量:34
  • 2孔建强,程克棣,王丽娜,郑晓东,戴均贵,朱平,王伟.HMG-CoA还原酶和FPP合酶基因拷贝数对紫穗槐-4,11-二烯酵母工程菌产量的影响[J].药学学报,2007,42(12):1314-1319. 被引量:12
  • 3Wallaart T E, Pras N, Qua X W J. Seasonal variations of artemisinin and its biosynthetic precursors intetraploid Artemisia annua plants compared with the diploid wild-type [J]. Plant Medica, 1999, 65(8): 723-728. 被引量:1
  • 4Xu Xingxiang, Zhu Jie, Huang Dazhong, Zhou Weishan. Totalsynthesis of arteannuin and deoxyarteannui [J]. Tetrahedron, 1986, 42(3): 819 -828. 被引量:1
  • 5Sehramek N, Wang H, R6misehMargl W, Keil B, Radykewiez T, Winzenh6rlein B, Beerhues L, Bather A, Rohdieh F, Gershenzon J, Liu B, Eisenreich W. Artemisinin biosynthesis in growing plants of Artemisia annua. AI3CO2 study [J]. Phytochemistry, 2010, 71(2-3): 179-187. 被引量:1
  • 6Bouwmeestera H J, Wallaartb T E, Janssena M H A, Loo B V, Jansen B J M, Posthumus M A, Sehmidt C O, Kraker J W D, K6nig W A, Franssen M C R. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J]. Phytochemistry, 1999, 52(5): 843-854. 被引量:1
  • 7Kuzuyama T, Seto H. Diversity of biosynthesis of the isoprene units [J]. NamralProduct Reports, 2003, 20:171-183. 被引量:1
  • 8Paddon C J, Keasling J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development [J]. Nature Reviews, 2014, 12(5): 335-367. 被引量:1
  • 9Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology, 2003, 21(7): 796-802. 被引量:1
  • 10Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang C Y M, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部