期刊文献+

基于MapReduce的并行KNN分类算法研究 被引量:3

Parallel KNN Classification Algorithm Based on MapReduce
下载PDF
导出
摘要 随着信息技术的发展,各个行业都积累了海量数据,并呈指数级增长趋势。如何挖掘出有用的数据来提供更好的服务显得尤为重要。论文借助MapReduce编程模型在处理海量数据方面的优势,结合KNN算法自身的特点设计相对应的Map和Reduce函数,实现KNN算法的MapReduce并行化。实验结果表明,较之传统的KNN串行算法,基于MapReduce的并行KNN算法具有较好的扩展性和加速比。 With the development of information technology in various fields has accumulated huge amounts of data, and exponential growth. How to dig out useful data to provide better service is particularly important. With the help of MapReduce programming model in dealing with massive data advantages, combined with its own characteristics of KNN algorithm design Map and Reduce functions to achieve KNN algorithm's MapReduce parallelism. Experimental results show that, compared with the traditional KNN serial algorithm, parallel KNN algorithm based on MapReduce has better scalahility and speedup.
作者 王睿
出处 《计算机与数字工程》 2013年第11期1738-1740,共3页 Computer & Digital Engineering
关键词 云计算 MAPREDUCE KNN HADOOP loud computing, MapReduce, KNN, Hadoop
  • 相关文献

参考文献4

二级参考文献76

  • 1王煜,王正欧.基于模糊决策树的文本分类规则抽取[J].计算机应用,2005,25(7):1634-1637. 被引量:13
  • 2卢苇,彭雅.几种常用文本分类算法性能比较与分析[J].湖南大学学报(自然科学版),2007,34(6):67-69. 被引量:31
  • 3刘华.基于关键短语的文本分类研究[J].中文信息学报,2007,21(4):34-41. 被引量:14
  • 4台德艺,谢飞,胡学钢.文本分类技术研究[J].合肥学院学报(自然科学版),2007,17(3):61-64. 被引量:6
  • 5Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 被引量:1
  • 6Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf 被引量:1
  • 7Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403. 被引量:1
  • 8Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11. 被引量:1
  • 9Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28. 被引量:1
  • 10Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117. 被引量:1

共引文献1403

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部