期刊文献+

铜电极表面铜锡合金电结晶机理 被引量:4

Electrocrystallization of Cu-Sn Alloy on Copper Electrode Surface
下载PDF
导出
摘要 在弱酸性柠檬酸盐体系铜锡合金镀液中,采用线性扫描伏安(LSV)、循环伏安(CV)和计时安培实验方法,运用Scharifker-Hills(SH)理论模型和Heerman-Tarallo(HT)理论模型分析拟合实验结果,研究铜锡合金在铜电极上的电沉积过程与电结晶机理.结果表明,铜锡合金在铜电极表面实现共沉积并遵循扩散控制下三维瞬时成核的电结晶过程.电位阶跃从-0.80 V负移至-0.85 V(vs SCE),HT理论分析得到铜锡合金的成核与生长的动力学参数分别为成核速率常数(A)值从20.19 s-1增加至177.67 s-1,成核活性位点密度数(N0)从6.10×105cm-2提高至1.42×106cm-2,扩散系数(D)为(6.13±0.62)×10-6cm2s-1. The co-deposition and electrocrystallization of Cu-Sn alloy in a weak acidic citrate bath were studied by linear sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry. The Scharifker- Hill (SH) theory model and Heerman-Tarallo (HT) theory model were applied to analyze the chronoamperometry data. The results show that the Cu-Sn alloy co-deposited on copper electrode, following instantaneous nucleation with three-dimensional (3D) growth under diffusion control. The kinetic parameters were obtained using the HT model. As the step potential shifted from -0.80 to -0.85 V, the nucleation rate constant (A) increased from 20.19 to 177.67 s-1, the density of active nucleation sites (No) increased from 6.10×10^5 to 1.42×10^6 cm^-2, and the diffusion coefficient (D) was (6.13+0.62)×10^-6 cm^2.s^-1.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第12期2579-2584,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21021002) 国家重点基础研究发展计划(973)(2009CB930703)资助项目~~
关键词 铜锡合金 电结晶 循环伏安 计时安培曲线 Cu-Sn alloy Electrocrystallization Cyclicvoltammetry Chronoamperometry
  • 相关文献

参考文献109

  • 1Hoffacker, G.; Kaiser, H.; Reissmueller, K.; Wirth, G. Cyanidic-alkaline Baths for the Galvanic Deposition of Copper-tin Alloy Coatings, Uses Thereof, and Metallic Bases Coated with Said Copper-tin Alloy Coating. US Patent: US 5534129, 1996-07-09. doi: 10.3878/j.issn.1006-9585.2013.13066. 被引量:1
  • 2Correia, A. N.; Fa?anha, M. X.; de Lima-Neto, P. Surf. Coat. Technol. 2007, 201 (16), 7216. 被引量:1
  • 3Hovestad, A.; Tacken, R. A. Physica Status Solidi (c) 2008, 5 (11), 3506. doi: 10.1002/pssc.v5:11. 被引量:1
  • 4Sürme, Y.; Gürten, A. A.; Bayol, E.; Ersoy, E. J. Alloy. Compd. 2009, 485 (1), 98. 被引量:1
  • 5Finazzi, G. A.; De Oliveira, E. M.; Carlos, I. A. Surf. Coat. Technol. 2004, 187 (2), 377. 被引量:1
  • 6Low, C. T. J.; Walsh, F. C. Surf. Coat. Technol. 2008, 202 (8), 1339. doi: 10.1016/j.surfcoat.2007.06.032. 被引量:1
  • 7Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28 (7), 879. doi: 10.1016/0013-4686(83)85163-9. 被引量:1
  • 8Palomar-Pardavé, M.; Scharifker, B. R.; Arce, E. M.; Romero-Romo, M. Electrochim. Acta 2005, 50 (24), 4736. doi: 10.1016/j.electacta.2005.03.004. 被引量:1
  • 9Ballesteros, J. C.; Chainet, E.; Ozil, P.; Meas, Y.; Trejo, G. Int. J. Electrochem. Sci. 2011, 6, 2632. 被引量:1
  • 10Gu, M.; Zhong, Q. J. Appl. Electrochem. 2011, 41 (7), 765. doi: 10.1007/s10800-011-0293-0. 被引量:1

二级参考文献849

共引文献420

同被引文献195

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部