摘要
针对经典朗肯、库仑土压力理论公式适用范围相对有限的问题,基于土压力理论与土坡稳定计算理论间的联系,在库仑理论的平面滑裂面假设条件下,采用微分单元化后的Bishop条分法,通过建立微元土条的水平、竖向受力平衡方程,推导出均布超载条件下的粘性土主被动土压力计算式,并给出临界破裂角的显式解答。相应简化条件下,该公式能简化为经典朗肯和库仑理论计算公式。算例分析结果表明,该公式理论计算值与试验实测值基本吻合,初步验证了公式的合理性;由于未考虑粘性填土开裂问题,现行规范方法得到的主动土压力偏小。
The application scope of classical Rankine' s and Coulomb's earth pressure theory is relatively limited. Based on the relationship between earth pressure theory and the theory of slope stability, the Bishop slice method is used in infinitesimal units under the condition of sliding plane hypothesis of Coulomb's earth pressure theory. Formula for earth pressure of cohesive soil under uniform overload was deduced by establishing horizontal and vertical direction force equilibrium equation of infinitesimal soil slices. Then the explicit solution of the critical rupture angle was given. It is shown by combining with examples that calculation formula of Classical Rankine's and Coulomb's theory is a special case of the corresponding simplified conditions; meanwhile, the calculated value with the deduced formula is close to the meas- ured value, which primarily proves the rationality of the formula; as the cracking of cohesive backfill isn't taken into ac- count, the active earth pressure calculated by the current code method is smaller.
出处
《水电能源科学》
北大核心
2013年第12期155-158,共4页
Water Resources and Power
基金
国家自然科学基金资助项目(51268010)
关键词
挡土墙
主动土压力
被动土压力
条分法
滑裂面
retaining wall
active earth pressure
passive earth pressure slice method
sliding plane