期刊文献+

利用OH-PLIF测量CH_4/H_2/空气混合气湍流燃烧速率 被引量:15

Measurement of Turbulent Burning Velocity of CH_4/H_2/Air Mixtures Using OH-PLIF
下载PDF
导出
摘要 利用OH平面激光诱导荧光技术测量CH4/H2/空气预混湍流火焰前锋面结构,得到湍流燃烧速率.采用不同孔径和开孔比的湍流发生板,产生不同湍流强度和尺度下稳定的预混湍流火焰供OH-PLIF测量.利用500张瞬时火焰结构图片得到湍流火焰前锋面的平均位置,运用角度法得到湍流燃烧速率.分析了掺氢比和湍流强度对湍流燃烧速率的影响,并给出了拟合关系式.实验结果表明,湍流燃烧速率随湍流强度的增加而增加,这是由于流场尺度减小引起火焰锋面面积增加.湍流燃烧速率随掺氢比的升高略有增加,这是由于掺氢引起火焰不稳定性增强,导致火焰对湍流流动的响应增强,增强了湍流火焰前锋面褶皱,从而增加了火焰面面积.湍流燃烧速率可以表示为ST/SL∝a(u′/SL)n,其中指数n约为0.35. Instantaneous flame front structure and turbulent burning velocities of CH4/H2/air mixtures were measured using OH-PLIF technique. Various turbulence intensities were generated by perforated plates with different hole diameter and opening ratio. Stabilized turbulent premixed flames were obtained at the outlet of the Bunsen burner for long-duration OH-PLIF measurement. 500 single shot images were averaged to obtain turbulent burning velocity by conventional angel method. The effects of hydrogen addition and turbulence intensity on turbulent burning velocity were analyzed and a power law correlation of turbulent burning velocity was obtained. Results show that turbulent burning velocity increases with the increase of turbulence intensity due to the increase of flame front area. Hydrogen addition increases the flame intrinsic instability and leads to the active response of laminar flame to turbulence, resulting in the much wrinkle flame front structure, larger flame front area and subsequently the increased turbulent burning velocity. A correlation between turbulent burning velocity and turbulence intensity was derived in the form of ST/SL∝ma(U'/SL)^n and n remained a constant value of 0.35.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2013年第6期512-516,共5页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51006080 51376004) 中央高校基本科研业务费专项资金资助项目
关键词 OH—PLIF 掺氢 火焰前锋面 湍流燃烧速率 OH-PLIF hydrogen addition flame front turbulent burning velocity
  • 相关文献

参考文献2

二级参考文献24

  • 1Daniele S, Jansohn P, Boulouchos K. Flame front characteristic and turbulent flame speed of lean premixed syngas combustion at gas turbine relevant eonditions[R]. ASME GT2009 59477,2009. 被引量:1
  • 2Casarsa L, Micheli D, Pedirocla V, et al. Investigations of pyrolysis syngas swirl flames in a eombustor model[R]. ASME GT2009-59610,2009. 被引量:1
  • 3Hasegawa T, Sato M, Nakata T. A study of combustion characteristics of gasified coal fuel[J]. ASME Journal of Engineering for Gas Turbines and Power, 2001,123 ( 1 ) : 22-32. 被引量:1
  • 4Strakey P, Sidwell T, Ontko J. Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor[J]. Proceedings of the Combustion Institute, 2007,31(2):3173- 3180. 被引量:1
  • 5Marley S K, Welle E J, Lyons K M. Combustion structures in lifted ethanol spray flames[J]. ASME Journal of Engineering for Gas Turbines and Power, 2004, 126 (2): 254 -257. 被引量:1
  • 6Tsurikov M,Meier W,Geigle K P. Investigations of a syngas-fired gas turbine model combustor by planar laser techniques[R]. ASME GT2006 -90344,2006. 被引量:1
  • 7Le C T, Dagaut P. Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures:experiments and modeling [J]. Proceedings of the Combustion Institute, 2009, 32 (1) :427-435. 被引量:1
  • 8Yamamoto K,Ozeki M, Hayashi N, et al. Burning velocity and OH concentration in premixed combustion[J].Proceedings of the Combustion Institute, 2009, 32 (1): 1227-1235. 被引量:1
  • 9Ax H, Stopper U, Meier W, et al. Experimental analysis of the combustion behavior of a gas turbine burner by laser measurement techniques[R]. ASME GT2009-59171, 2009. 被引量:1
  • 10Stopper U,Aigner M,Meier W,et al. Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques[J].Journal of Engineering for Gas Turbines and Power,2009,131(2) :021504.1 -021504.8. 被引量:1

共引文献6

同被引文献121

引证文献15

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部