期刊文献+

冷端边界条件对发汗冷却解析解的影响 被引量:1

Effects of coolant side boundary condition on analytical transpiration cooling solutions
原文传递
导出
摘要 发汗冷却多孔区域的非热平衡模型数值计算中,冷端边界条件对多孔介质内流固温度分布有着非常明显的影响。该文针对发汗冷却多孔壁面内部非热平衡模型理论求解方法中冷端边界条件的设置问题,比较了3种不同的冷端边界条件设置模型。结果表明:在流动Reynolds数较小时,假设冷端流体温度等于初始温度的等温边界且假设边界绝热的边界条件会导致冷端附近流固温度偏低;而假设等温边界同时存在冲击冷却边界会使得流固温度整体范围内偏低。该文分析了量纲为1的数对不同边界条件模型计算结果的影响,指出量纲为1的冷却剂流量与多孔体Biot数增加会使流体冷端进口温度等于远端温度假设成立,并提出了热平衡假设成立的条件方程。 Analytical solutions for the temperature distributions in the porous media zone in transpiration cooling were developed using the local thermal non-equilibrlum model. Three different boundary condition models were used for the coolant entrance side of the porous media wall. The results show that the solid and fluid temperatures are lower for the isothermal with insulation boundary near the coolant side entrance, while the solid and fluid temperatures are lower through the porous wall for the isothermal boundary with convection heat transfer at the back side. The effects of the dimensionless parameters on the results were analyzed for different boundary conditions. Increasing the dimensionless coolant mass flow rate and Blot number resulted in results for the isothermal boundary condition at the coolant side closer to the results calculated without the temperature assumption. The conditions when the local thermal equilibrium model could be used were discussed with a defining equation. The dimensionless solid and fluid temperature difference increases with increasing coolant mass flow rate or decreasing Blot number, which makes the local thermal equilibrium model inapplicable.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1452-1458,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金重点项目(50736003) 国防基础研究计划项目(B1420110113)
关键词 发汗冷却 局部非热平衡 边界条件 理论解 transpiration cooling local thermal non-equilibrium boundary condition analytical solution
  • 相关文献

参考文献21

  • 1Eckert E R G, Livingood N B. Comparison of Effectiveness of Convection-, Transpiration-, and Film-Cooling Methods with Air as Coolant [S]. NACA TN 2010, 1953. 被引量:1
  • 2刘元清,王扬平,姜培学.边界条件局部变化对二维发汗冷却的影响[J].工程热物理学报,2010,31(4):667-670. 被引量:1
  • 3Jiang P X, Ren Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model [J]. International Journal of Heat and Fluid Flow, 2001, 22(1) 102 - 110. 被引量:1
  • 4Jiang P X, Lu X C. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels [J]. International Journal of Heat and Mass Transfer, 2006, 49(9/10) 1685 - 1695. 被引量:1
  • 5Alazmi B, Vafai K. Analysis of variants within the porous media transport models [J]. Journal of Heat Transfer, 2000, 122(2): 303-326. 被引量:1
  • 6Alazmi B, Vafai K. Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions [J]. International Journal of Heat and Mass Transfer, 2002, 45(15) : 3071 - 3087. 被引量:1
  • 7Wang J H, Wang H N. A discussion of transpiration cooling problems through an analytical solution of local thermal nonequilibrium model [J]. Journal of Heat Transfer, 2006, 128(10) : 1093 - 1098. 被引量:1
  • 8Wolfersdorf V J. Effect of coolant side heat transfer on transpiration cooling [J]. Heat and Mass Transfer, 2005, 41(4): 327-337. 被引量:1
  • 9Andoh Y H, Lips B. Prediction of porous walls thermal protection by effusion or transpiration cooling: An analytical approach [J]. Applied Thermal Engineering, 2003, 23(15) : 1947 - 1958. 被引量:1
  • 10Shi J X, Wang J H. Optimized structure of two layered porous media with genetic algorithm for transpiration cooling [J]. International Journal of Thermal Sciences, 2008, 47(12) : 1595 - 1601. 被引量:1

二级参考文献16

共引文献19

同被引文献14

  • 1孟丽燕,姜培学,蒋方帅,江世臣,任泽霈.孔隙及热流的非均匀性对发散冷却的影响[J].清华大学学报(自然科学版),2006,46(2):230-233. 被引量:3
  • 2时骏祥,王建华.发散冷却最小冷却介质注射量的数值研究[J].航空动力学报,2007,22(2):222-227. 被引量:1
  • 3Ford B. Ellipsoidal bubble diffusion in a turbulent shear layer[J]. International Journal of Multiphase Flow, 2000, 26(3) : 503-516. 被引量:1
  • 4Glass D E, Arthur D. Numerical analysis of convection transpiration cooling[R]. NASA/TM-1999-209828,1999. 被引量:1
  • 5Kays W M, Crawford M E. Convective heat and mass transfer[M]. 2nd ed. New York: McGraw Hill, 1980. 被引量:1
  • 6Choi S H,Scotti S J,Song K D, et al. Transpiration cooling of a scramjet engine combustion chamber[R]. AIAA 97- 2576,1997. 被引量:1
  • 7Landis J A,Bowman J W. Numerical study of a transpira- tion cooled rocket nozzle[R]. AIAA 96-2580,1996. 被引量:1
  • 8Lacy B P,Wilson D E, Varghese P L. Dissociative cooling effect on stagnation heat transfer of gas mixture injection [J]. Journal of Spacecraft and Rockets, 1995,32(5) : 777-782. 被引量:1
  • 9王补宣.工程传热与传质[M].北京:科学出版社,2002. 被引量:1
  • 10杨强生,蒲保荣.高等传热传质学[M].上海学出版社,1996. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部