摘要
如果图G的一个正常边染色满足任意两个相邻点的关联边色集不同,且任意两种颜色所染边数目相差不超过1,则称为均匀邻强边染色(EASEC),其所用最少染色数称为均匀邻强边色数.利用构造法得到了积图的均匀邻强边染色的若干结论,并且给出了等阶的星与星、轮与轮、完全二部图与完全二部图的积图的均匀邻强边色数,验证了它们满足均匀邻强边染色猜想(EASECC).
A proper edge coloring of graph G is called equitable adjacent strong edge eoloring(EASEC) if colored sets from any two adjacent vertices incident edge are different, and the number of edges in any two color classes differ by at most one,which the required minimum number of colors is called the equitable adjacent strong edge chromatic number. In this paper, we get some conclusions of equitable adiacent strong edge coloring of product graph by using constructive method,and present the equitable adjacent strong edge chromatic numbers of product graphs of star and star,wheel and wheel,complete bipartite graph and complete bipartite graph with equivalent order, which satisfy the conjecture on EASECC.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期45-49,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(61163037)
中央高校基本科研业务费专项资金资助项目(ZYZ2011082
3192013003)
西北民族大学中青年科研基金资助项目(X2007-012)
关键词
积图
均匀邻强边染色
均匀邻强边色数
product graph
equitable adjacent strong edge coloring
equitable adjacent strong edge chromatic number