期刊文献+

一种基于MAD的鲁棒性分形维数计算方法及图像识别应用 被引量:1

A MAD-based Robust Fractal Dimension Calculating Method and Its Application in Image Recognition
下载PDF
导出
摘要 传统鲁棒差分盒计数法(RDBC)已成功用于高斯噪声图像的分形维估计,但由于对椒盐噪声较敏感,因此不再适用于椒盐噪声图像的分形维估计和图像分类。本文提出一种基于中值绝对偏差(MAD)的分形维数计算方法(MAD-DBC)。该方法利用MAD进行差分盒计数,对椒盐噪声具有很好的鲁棒性特点。实验结果表明,利用小波多分辨率的DBC、RDBC和MAD-DBC对椒盐噪声的16种Brodatz纹理图像进行分类,MAD-DBC具有更高的识别率和更好的噪声鲁棒性。 The traditional robust differential box-counting method ( RDBC) has been successfully used for calculating fractal di-mension of an image degraded by Gaussian noise .However , it is not suitable for estimating fractal dimension of salt & pepper noisy images and classifying those images .This paper presents a MAD-based method ( MAD-DBC) for calculating fractal dimen-sion of an image .The method uses MAD for differential box-counting , which is robust against salt&pepper noises .Classification experiments on Brodatz texture images show that , compared with DBC and RDBC , the MAD-DBC achieves higher classification rate and better noise robustness .
出处 《计算机与现代化》 2013年第12期102-105,共4页 Computer and Modernization
基金 国家自然科学基金资助项目(61003178 11201312 11071150) 深圳科技计划基础研究项目(JC201105170615A)
关键词 分形维 差分盒计数法 MAD 图像分类 fractal dimension differential box-counting MAD image classification
  • 相关文献

参考文献14

  • 1Mandelbrot B B. The Fractal Geometry of Nature [ M ]. W. H. Freeman and Company, 1982. 被引量:1
  • 2张济忠编著..分形[M].北京:清华大学出版社,2011:310.
  • 3Sarkar N, Chaudhuri B B. An efficient differential box- counting approach to compute fractal dimension of image [ J]. IEEE Transactions on Systems, Man and Cybernet- ics, 1994,24(1) :115-120. 被引量:1
  • 4Bisoia A K, Mishrab J. On calculation of fractal dimension of images [ J ]. Pattern Recognition Letter, 2001,22 (6-7) : 631-637. 被引量:1
  • 5Li J, Du Q, Sun C. An improved box-counting method for image fractal dimension estimation [ J ]. Pattern Recogni- tion, 2009,42( 11 ) :2460-2469. 被引量:1
  • 6杨词银,许枫.一种抗噪分形维计算方法及其在声纳图像识别中的应用[J].应用声学,2008,27(2):95-101. 被引量:3
  • 7Lee W L, Hsieh K S. A robust algorithm for the fractal di- mension of images and its applications to the classification of natural images and ultrasonic liver images [ J ]. Signal Processing, 2010,90 (6) : 1894-1904. 被引量:1
  • 8Martfnez-L6pez F, Cabrerizo-Vllchez M A, Hidalgo-/fdvarez R. A study of the different methods usually employed to com- pute the fractal dimension[ J ]. Physica A, 2002,311 (3-4) : 411-428. 被引量:1
  • 9孙延奎编著..小波分析及其应用[M].北京:机械工业出版社,2005:285.
  • 10董立岩,苑森淼,刘光远,贾书洪.基于贝叶斯分类器的图像分类[J].吉林大学学报(理学版),2007,45(2):249-253. 被引量:30

二级参考文献28

  • 1黄雪梅,唐治德,赵一凡,舒志强.BP网络研究及其在肺癌诊断系统中的应用[J].重庆大学学报(自然科学版),2005,28(1):42-44. 被引量:6
  • 2杨治明,王晓蓉,彭军,陈应祖.BP人工神经网络在图像分割中的应用[J].计算机科学,2007,34(3):234-236. 被引量:46
  • 3Merouani H, McCall J, McKenzie I. Classification of GRF texture in Mammograms through discriminant Analysis 7th International Symposium on Signal Processing and Its Applications, 2003, 673-676. 被引量:1
  • 4Heikkila M, Pietilaiinen M, Schmid C. Description of interest regions with local binary patterns. Pattern Recognition, 2009, 42(3):425-436. 被引量:1
  • 5Lehmann T. m. , et al. Automatic categorization of medical images for content-based retrieval and data mining. Computerized Medical Imaging and Graphics ,2005 (29) 被引量:1
  • 6the Medical Subject Heading. [2006-03-12]. http:/nlm.nih. gov/mesh 被引量:1
  • 7the Unified Medical Language System. [ 2006-03-12 ].http ://nlm. nih. gov/research/umls 被引量:1
  • 8Yiming Yang; Xin Liu. A Re-Examination of Text Categorization Methods. Proceedings of the 22nd Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, 1999 被引量:1
  • 9T. Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Proceedings of the European Conference of Machine Learning,Berlin, 1998 被引量:1
  • 10Mark O. G. , et al. Comparison of Global Features for Categorization of Medical Images. [ 20064)3-22 ]. http://libra.imib. rwth-aachen. de/irma/ps-pdf/SPIE _ 2004-5371-35 pdf. 被引量:1

共引文献46

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部