期刊文献+

基于hp自适应伪谱法的N脉冲轨道优化设计 被引量:3

Optimal design of N-impulse trajectories based on hp-adaptive pseudospectral method
下载PDF
导出
摘要 在实效性要求高的空间操控任务中,脉冲轨道的优化设计必不可少。针对脉冲轨道转移和交会的优化设计问题,基于hp自适应伪谱法设计一种通用方法,以直接法计算为主,综合使用间接法主矢量理论交互式规划出最优N脉冲轨道的机动方案。该方法以hp自适应伪谱法直接求解首末端双脉冲机动,依据间接法最优脉冲机动满足的主矢量必要条件进行检验,通过增加脉冲或者首末端漂移进行交互式规划,逐步确定出最优脉冲数目N的值,再采用hp自适应伪谱法求解出各脉冲速度增量的矢量与施加时刻,获得脉冲轨道的优化设计。提供2个仿真场景算例,求解过程和结果表明,该方法对初值敏感度小、鲁棒性强、收敛快、实用有效,可以便捷处理脉冲轨道的优化设计问题。 The optimal design of impulse trajectories is essential in space-assembly and space-succor. A no-vel algorithm for solving general minimum-fuel N impulsive orbit maneuver,e, g. orbit transfer and rendezvous, is proposed. The developed algorithm combines a primer vector obtained through the use of a Yamanaka-Ank-ersen state transition matrix and an interactive optimization approach based on an hp-adaptive pseudospctral method to calculate the N-impulse velocities directly. The approach starts from two-impulse calculated by the hp-adaptive pseudospctral method at initial and terminal points, and is checked by satisfying the necessary condi-tions for the primer vector. By the reference of the obtained primer vector magnitude information, adding initial coast, final coast or a new mid-impulse is tried. Provided the number of multiple-impulse N is fixed, its numeri-cal result of the N-impulse velocities and the time can be calculated by the hp-adaptive pseudospctral method. Through the interactive procedure, the optimal N-impulsive orbit maneuvers are designed. The simulation and outcomes demonstrate that the algorithm is fairly robust, quickly converged and able to deal with the optimal design of N-impulse trajectories efficiently and practically.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2566-2571,共6页 Systems Engineering and Electronics
基金 中国科学院光电研究院自主部署研究生创新基金"雏鹰计划"(Y30B02A18Y)资助课题
关键词 脉冲轨道 主矢量 交互规划 hp自适应伪谱法 impulsive trajeetory primer vector interactive optimization approach hp-adaptive pseudospctral method
  • 相关文献

参考文献18

  • 1Gobetz F W, Doll J R. A survey of impulsive trajeetories[J]. American Institute of Aeronautics and Astronautics Journal, 1969, 7(5): 801-834. 被引量:1
  • 2唐国金,罗亚中,雍恩米.航天器轨迹优化理论、方法及应用[M].北京:科学出版社,2012:44-47. 被引量:15
  • 3Lawden D F. Optimal trajectories for space navigation [M] London: Butterworths, 1963. 被引量:1
  • 4Lion P M, Handelsman M. Primer vector on fixed time impul sire trajectory[J]. American Institute of Aeronautics and Astro nautics Journal, 1968, 6(1): 127- 132. 被引量:1
  • 5Rao A V. A survey of numerical methods for optimal control[C]// Proc. of the American Astronautical Society, 2009 : 1 - 32. 被引量:1
  • 6符俊,蔡洪,丁智坚.地球静止轨道-低轨道最优异面转移方法[J].系统工程与电子技术,2012,34(7):1439-1444. 被引量:1
  • 7Carter T E, Alvaez S A. Quadratic-based computation of four- impulsive optimal rendezvous near circular orbit[J]. Journal of Guidance Control, and Dynamics, 2000, 23 (1) : 109 - 117. 被引量:1
  • 8Kara-Zaitri M, Arzelier D, Louembet C. Mixed iterative algo rithm for solving optimal impulsive time fixed rendezvous prob lem[C]//Proc, of the American Institute of Aeronautics and Astronautics Guidance, Navigation, and Control Conference, 2010:1-19. 被引量:1
  • 9Abedelkhalik O, Mortari D. N-impulsive orbit transfer using ge- netic algorithms[J].Journal of Spacecraft and Rockets, 2007, 44(2) :456 - 459. 被引量:1
  • 10Aubin B S. Optimization of relative orbit transfers via particle swarm and primer vector theory[D]. Urbana: University of Illinois at Urbana Champaign, 2011. 被引量:1

二级参考文献16

  • 1陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277. 被引量:28
  • 2任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988.. 被引量:36
  • 3Roger R B, Donald D M, Jerry E W. Fundamentals of astrody- namics[M]. Dover: Dover Publications, 1971 ..56 - 58. 被引量:1
  • 4Prussing J E. A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].The Journal of the Astronautical Sciences, 2000, 48(2) : 131 - 148. 被引量:1
  • 5Shen H J, Tsiotras P. Optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J]. Journal of Gui- dance, Control, and Dynamics, 2003, 26(1).. 50- 61. 被引量:1
  • 6Spencer D B, Kim Y H. Optimal spacecraft rendezvous using ge- netic algorithms[J]. Journal of Spacecraft and Rockets, 2002, 39(6) :859 - 865. 被引量:1
  • 7Luo Y Z, Tang G J, Lei Y J, et al. Optimization of multiple-im- pulse multiple-revolution rendezvous phasing maneuvers [J]. Journal of Guidance, Control and Dynamics, 2007, 30(4) : 946 -952. 被引量:1
  • 8Luo Y Z, Tang G J, Li H Y. Optimization of multi-impulse minimum-time rendezvous using a hybrid genetic algorithm[J]. Aerospace Science and Tecl,gy, 2006, 10(6) :534 - 573. 被引量:1
  • 9Luo Y Z, Tang G J. Optimization of perturbed and constrained fuel-optimal impulsive rendezvous using a hybrid approach[J]. Engineering Optimization, 2006, 38(8) = 959 - 973. 被引量:1
  • 10Qian Y, Xu M, Zeng Z F, et al. Optimal multiple-impulse time fixed rendezvous using genetic algorithm[C]//Proc, of the IEEE fnternational Conference Information Engineering and Computer Science, 2010 : 1 - 4. 被引量:1

共引文献14

同被引文献47

  • 1孙凯,戈新生.航天器太阳帆板伸展过程最优控制的粒子群优化算法[J].工程力学,2007,24(9):188-192. 被引量:8
  • 2Jaddu H. Direct solution of nonlinear optimal control problems using quasi linearization and Chebyshev polynomials[J]. Journal of the Franklin Institute, 2002, 339(4/5) : 479 - 498. 被引量:1
  • 3Shamsi M. A modified pseudospectral scheme for accurate solu- tion of bang bang optimal control problems[J]. Optimal Control Application and Methods, 2011, 32(6) :668 - 680. 被引量:1
  • 4Ross I M, Fahroo F. A direct method for solving nonsmooth op- timal control problems[C]//Proc, of the International Federa tion of Automatic Control World Conference, 2002 : 3860 - 3864. 被引量:1
  • 5Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospec- tral method for solving optimal control problems[J]. Optimal Control Application and Methods, 2010, 32(4) :476 - 502. 被引量:1
  • 6Darby C L, Hager W W, Rao A V. Direct trajectory optimization using a variable low order adaptive pseudospectral method [J]. Jour hal of Spacecraft and Rockets, 2011, 48(3) : 433 - 445. 被引量:1
  • 7Marzban H R, Hoseini S M. A composite Chebyshev finite difference method for nonlinear optimal control problems[J]. Communication in Nonlinear Science and Numerical Simula-tion, 2013, 18(6): 1347-1361. 被引量:1
  • 8Huntington G T, Rao A V. Comparison of global and local col- location methods for optimal control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2) : 432 - 436. 被引量:1
  • 9Huntington G T, Rao A V. A Comparison between global and local orthogonal collocation methods for solving optimal control problems[C]//Proc, of the AIAA American Control Confer- ence, 2007: 1950- 1957. 被引量:1
  • 10Herman A L, Conway B A. Direct optimization using colloca tion based on high order Gauss Lobatto quadrature rules [J]. Journal of Guidance, Control, and Dynamics, 1996, 19 (3): 592-599. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部