期刊文献+

胸部CT图像肺区域边界凹陷自动修补 被引量:7

Automatic repair of lung boundary concave in chest CT images
下载PDF
导出
摘要 提出用边界曲线局部极小值点连线法修补阈值分割后的CT横断面图像肺区域边界处血管和胸膜结节型凹陷。设置不同的匹配模板,实现在不同坐标系下寻找边界曲线的局部极小值点,从而确定需要修补的位置。将肺区域边界线上的点分为局部极小值点和非局部极小值点两类,连接凹陷缺口处两边的两个邻近局部极小值点,修补肺边界凹陷部分。实验表明,与通过计算边界点的曲率找边界凸点方法相比,该方法不仅有效地降低了肺实质分割的计算量,而且减少了由于过度分割造成的分割错误。 After the lung regions are segmented in chest CT images, there exist some concavities or gaps on lung borders. The scheme of connection between boundary curve local minimum points is proposed to repair the lung boundary for gaining the entire lung parencbyma segmentation. Different matching templates are selected to detect the local minimum points in the border curve under different coordinates in order to determine locations that need to repair. Two contiguous local minimum points are connected across the concavity to repair the segmented iung border flaw. The experimentation shows that the scheme in this paper reduces the fault segmentation and enhances the efficiency of lung parenchyma segmentation efficiently.
出处 《计算机工程与应用》 CSCD 2013年第24期191-194,218,共5页 Computer Engineering and Applications
基金 河北大学开放基金(No.BM201110) 博士基金(No.2010-196) 河北大学大学生创新创业训练计划项目
关键词 CT图像 肺边界 图像分割 边界局部极小值点 匹配模板 Computerized Tomography(CT) image lung boundary image segmentation boundary local minimum point matching template
  • 相关文献

参考文献13

  • 1Doi K.Computer-aided diagnosis in medical imaging: historical review, current status and future potential[J].Computerized Medi- cal Imaging and Graphics, 2007,31 (4) : 198-211. 被引量:1
  • 2Yu Peichun,Xu Hao,Zhu Ying,et al.An automatic computer- aided detection scheme for pneumoconiosis on digital chest radiographs[J].Journal of Digital Imaging,2011,24(3) :382-393. 被引量:1
  • 3Armato S G, Sensakovie W F.Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis[J].Acad Radiol, 2004,11 (9) : 1011-1021. 被引量:1
  • 4钟灵,张建州,张九龙.基于样条曲线拟合的肺区轮廓修补算法[J].计算机应用研究,2007,24(9):305-306. 被引量:2
  • 5Pu J,Roos J,Yi C A,et al.Adaptive border marching algo- rithm:automatic lung segmentation on chest CT images[J]. Computerized Medical Imaging and Graphics, 2008,32 (6) : 452-462. 被引量:1
  • 6王瑞鑫,郭希娟.自适应边界行进算法在肺癌自动检测系统中的应用[J].仪器仪表学报,2009,30(10):36-39. 被引量:1
  • 7Kanazawa K,Kawata Y,Niki N, et al.Computer-aided diag- nosis for pulmonary nodules based on helical CT images[J]. Computerized Medical Imaging and Graphics, 1998,22(2) : 157-167. 被引量:1
  • 8王倩..CT图像中肺部疾病的计算机辅助诊断方法研究[D].华中科技大学,2009:
  • 9Graham R L.Finding the convex hull of a simple polygon[J]. Journal of Algorithms, 1983,4 : 324-331. 被引量:1
  • 10Otsu N.A threshold selection method from gray-level histo- grams[J].IEEE Transactions on Systems,Man and Cybernet- ics, 1975,9( 1 ) :62-66. 被引量:1

二级参考文献6

  • 1SLUIMER I,SCHILHAM A,PROKOP M,et al.Computer analysis of computed tomography scans of the lung:a survey[J].IEEE Tran-sactions on Medical Imaging,2006,25(4):385-405. 被引量:1
  • 2ARMATO S G,SENSAKOVIC W F.Automated lung segmentation for thoravic CT[J].Acad Radiol,2004,11(9):1011-1021. 被引量:1
  • 3OTSU N.A threshold selection method from gray-level histogram[J].IEEE Transactions on Systems,Man and Cybernetics,1979,9(1):62-66. 被引量:1
  • 4SLUIMER I,PROKOP M,GINNEKEN B van.Toward automated segmentation of the pathological lung in CT[J].IEEE Transactions on Medical Imaging,2005,24(8):1025-1038. 被引量:1
  • 5FREEMAN H.Computer processing of line-drawing images[J].ACM Comput Surveys,1974,6(1):57-97. 被引量:1
  • 6HEARN D,BAKER M P.计算机图形学[M].蔡士杰,吴春镕,孙正兴,等译.2版.北京:电子工业出版社,2002:255-256. 被引量:1

共引文献661

同被引文献89

  • 1周胜利,徐春玲,张永刚,田岳华,郭嘉漪.螺旋CT在非典型结节病鉴别诊断中的价值[J].放射学实践,2011,26(1):47-50. 被引量:17
  • 2叶鸿瑾,张雪英,何小刚.基于小波变换和中值滤波的医学图像去噪[J].太原理工大学学报,2005,36(5):511-514. 被引量:22
  • 3World Health Organization. The top 10 causes of death [ EB/OL].[ 2014- 11 - 24 ]. http://www, who. int/mediacentre/factsheets/ fs310/en/. 被引量:1
  • 4BROWN M S, GOLDIN J G, SUH R D, et al. Lung micronodules: automated method for detection at thin-section CT-initial experi- ence [ J]. Radiology, 2003, 226(1) : 256 - 262. 被引量:1
  • 5MULLALLY W, BETKE M, WANG J, et al. Segmentation of nod- ules an chest computed tomography for growth assessment [ J]. Med- ical Physics, 2004, 31 (4) : 839 - 848. 被引量:1
  • 6ZHOU X, HAYASHI T, HARA T, et al. Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images [ J]. Computerized Medical Imaging and Graphics, 2006, 30(5) : 299 -313. 被引量:1
  • 7ARMATO S G, SENSAKOVIC W F. Automated lung segmentation for thoracic CT impact on computer-aided diagnosis [ J]. Academic Radiology, 2004, 11(9): 1011-1021. 被引量:1
  • 8LI Q, LI F, DOI K. Computerized detection of lung nodules in thin- section CT images by use of selective enhancement filters and an au- tomated rule-based classifier [ J]. Academic Radiology, 2008, 15 (2): 165 -175. 被引量:1
  • 9WIEMKER R, ROGALLA P, ZWARTKRUIS A, et al. Computer aided lung nodule detection on high resolution CT data [ EB/OL]. [ 2015- 01 - 07]. http://citeseerx, ist. psu. edu/viewdoc/download? doi = 10.1.1.19. 8652&rep = repl &type = pdf. 被引量:1
  • 10HEDLUND L W, ANDERSON R F, GOULDING P L, et al. Two methods for isolating the lung area of a CT scan for density informa- tion [ J]. Radiology, 1982, 144(2) : 353 - 357. 被引量:1

引证文献7

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部