期刊文献+

可循环微泡沫钻井液的微泡粒径影响因素研究 被引量:9

Effect Factors of Microbubble Size in Recirculated Micro-Foam Drilling Fluid
下载PDF
导出
摘要 采用显微照相技术结合NanoMeasurerl.2粒径分析软件研究了搅拌速率、搅拌时间、稳泡剂黄原胶(XC)和自制起泡剂DBA2-14(两性双子表面活性剂)的浓度对微泡沫粒径的影响。结果表明,高速搅拌和增加稳泡剂浓度有利于形成均匀、细小、稳定的泡沫,而搅拌时间和起泡荆的浓度对微泡沫粒径无显著影响。制备微泡沫体系的最佳条件为:0.4%羧甲基纤维素钠(HV-CMC)、0.4%XC、0.2%DBA搅拌速率10000r/min,搅拌时间2min。微泡沫粒径在23.58--109.65岬,平均直径为71.87μm。微泡沫粒径随静置时间的延长逐渐增大,静置12h后的微泡沫平均粒径小于200lun。 The effects of mixing rate, mixing time, concentrations of foam stabilizer xanthan gum (XC) and homemade surfactant DBA2 on the size of microbubbles were investigated using microscopic-imaging technique combined with Nano Measurerl.2 size analysis software. The results showed that high mixing rate and increasing XC concentration were beneficial to generate homogeneous distribution, fine and stable bubbles. However, the bubble size did not change significantly as the mixing time and surfaetant concentration different. The optimum reaction condition of microbubble system was obtained as follows: 0.4% sodium carboxymethylcellulose (HV-CMC), 0.4% XC, 0.2% DBA24, 10000 r/min mixing rate and 2 min mixing time. The corresponding size of mierobubble was between 23.58 lain and 109.65 trn with a mean size of 71.87 pmo The microbubbles would slowly grow bigger with the lapse of standing time, but its size did not exceed 200 μm after 12 hrs.
出处 《油田化学》 CAS CSCD 北大核心 2013年第4期505-508,共4页 Oilfield Chemistry
关键词 微泡沫钻井液 粒径 显微照相 micro-foam drilling fluid bubble size microphotograph
  • 相关文献

参考文献15

  • 1吉永忠,张坤,余勇,刘晓清.微泡钻井液防漏堵漏技术在玉皇1井的应用[J].钻采工艺,2005,28(3):95-97. 被引量:14
  • 2王洪军,焦震,郑秀华,夏伯如.大庆油田微泡沫钻井液的研究与应用[J].石油钻采工艺,2007,29(5):88-92. 被引量:32
  • 3Growcock F B, Belkin A, Fosdick M. Recent advances in aphron drilling fluids [Z ]. SPE 97982,2006. 被引量:1
  • 4Shivhare S, Kuru E. Rheology and stability of non-aqueous micro bubble based drilling fluids [Z ]. SPE 141136,2011. 被引量:1
  • 5Bjorndalen N, Kuru E. Physico-chemical characterization of aphron-based drilling fluids [J]. J Can Pet Technol, 2008, 47 (11): 15-21. 被引量:1
  • 6Ivan C D, Groweock F B, Friedheim J E. Chemical and physical characterization of aphron-based drilling fluids [Z]. SPE 77445, 2002. 被引量:1
  • 7Parthasarathy R, Jamson G J, Ahmed N. Bubble breakup in stirred vessels, predicting the Sauter mean diameter [J]. Chem Eng Res Des, 1991,69(A4): 295-301. 被引量:1
  • 8Jauregi P, Mitchell G R, Varley J. Colloidal gas aphrons (CGA): dispersion and structural features[J]. AIChE J,2000,46(1): 24-36. 被引量:1
  • 9Dai Yujie, Deng Tong. Stabilization and characterization of colloidal gas aphron dispersions [J]. J Colloid Interface Sci, 2003,260(2): 360-365. 被引量:1
  • 10Nareh M A, Shahri M P, Zamani M. Preparation and characterization of colloid gas aphron based drilling fluids using a plant-based surfactant[Z]. SPE 16088,2012. 被引量:1

二级参考文献5

共引文献42

同被引文献129

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部