期刊文献+

基于LWE两方数相等的保密计算协议

Secure Computation Protocol Based on LWE Two-party Numbers Equality
下载PDF
导出
摘要 保密地比较两方数是否相等是安全多方计算(SMC)问题中重要的研究内容,其在数据挖掘、在线推荐服务、在线预定服务、医药数据库等领域有着重要应用。针对半诚实模型下两方保密比较协议无法抵抗恶意攻击的问题,提出一种恶意模型下两方数相等的保密计算协议,采用基于格上差错学习(LWE)困难性问题的公钥加密机制和Paillier加密方案,使得存在恶意攻击者的情况下能够阻止恶意攻击行为发生,同时证明协议在恶意模型下是安全的。分析结果表明,该协议执行完成后不会泄露通信双方的私有信息,与半诚实模型下两方保密比较协议相比,能有效抵抗恶意攻击者的攻击,为SMC通信提供了较好的解决方案。 The equation test is an important part in Security Multi-party Computation(SMC). It has important application in the fields of data mining, recommendation service, online dating service, and medical database. According to the defects existing in the protocols of comparing two data based on security under the semi-honesty model, this paper proposes a secure computation protocol for two-party numbers equality test in the malicious model. The protocol uses the public-key encryption mechanism based on lattice Learning With Error(LWE) difficult problem and Paillier encryption scheme, it can prevent malicious attacks in the case of existing malicious attacker, and at the same time proves that agreement is safe under the malicious model. Analysis results prove that the protocol after the implementation is completed, and no private information in both communication parties is revealed. Compared with the protocols of comparing two data based on security under the semi-honesty model, the proposed protocol can effectively resist the attacks from the malicious adversary and provides a good solution for the communication with high needs.
出处 《计算机工程》 CAS CSCD 2013年第12期122-125,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61272436) 广东省自然科学基金资助项目(10351806001000000)
关键词 安全多方计算 两方数相等 半诚实模型 恶意模型 差错学习困难性问题 Paillier加密方案 Security Multi-party Computation(SMC) two-party numbers equality semi-honesty model malicious model Learning WithError(LWE) difficulty problem Paillier encryption scheme
  • 相关文献

参考文献15

  • 1Yao A.Protocols for Secure Computation[C]//Proc.of the 23rd IEEE Symposium on Foundations of Computer Science.Chicago,USA:IEEE Computer Society,1982. 被引量:1
  • 2Goldreich O,Micali S,Wigderson A.How to Play Any Mental Game[C]//Proc.of the 19th Annual ACM Conference on Theory of Computing.New York,USA:ACM Press,1987. 被引量:1
  • 3Selker T,Goler J.The SAVE System-secure Architecture for Voting Electronically[J].BT Technology Journal,2004,22(4):89-95. 被引量:1
  • 4Burtch K O.Linux Shell Scripting with Bash[M].[S.l.]:Sams Publishing,2004. 被引量:1
  • 5Stevens R,Rago S.Advanced Programming in the UNIX Environment[M].[S.l.]:Addison-Wesley,2005. 被引量:1
  • 6Shamir A.How to Share a Secret[J].Communications of the ACM,1979,22(11):612-613. 被引量:1
  • 7Han Y,Okamoto T,Qing S.Proxy Signatures,Revisited[M].Berlin,Germany:Springer-Verlag,1997:223-232. 被引量:1
  • 8李顺东,司天歌,戴一奇.集合包含与几何包含的多方保密计算[J].计算机研究与发展,2005,42(10):1647-1653. 被引量:21
  • 9Kissner L,Song D.Privacy-preserving Set Operations[C]// Proc.of the 25th Annual International Cryptology Conference.Santa Barbara,USA:[s.n.],2005. 被引量:1
  • 10Freedman M J,Nissim K,Pinkas B.Efficient Private Matching and Set Intersection[C]//Proc.of International Conference on the Theory and Applications of Cryptographic Techniques.Interlaken,Switzerland:[s.n.],2004. 被引量:1

二级参考文献20

  • 1Shun-DongLi Yi-QiDai.Secure Two-Party Computational Geometry[J].Journal of Computer Science & Technology,2005,20(2):258-263. 被引量:36
  • 2Yao A C. Protocols for secure computations [C]. The 23rd IEEE Symposium on Foundations of Computer Science, Piscataway, USA, IEEE, 1982: 160-164. 被引量:1
  • 3Goldreich O, Micali S, and Wigderson A. How to play ANY mental game[C]. The 19th Annual ACM Conference on Theory of Computing, New York, 1987: 218-229. 被引量:1
  • 4Goldreich O. Foundations of Cryptography: Basic Applications[M]. London: Cambridge University Press, 2004: 599-729. 被引量:1
  • 5Dachman-Soled D, Malkin T, Raykova M, et al. Efficient robust private set intersection [C]. ACNS '09, 2009, LNCS, 5536: 125-142. 被引量:1
  • 6Shor P W. .Polynomial-time algorithm for prime factorizeation and discrete logarithm on a quantum computer [J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509. 被引量:1
  • 7Gentry C, Peikert C, and Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[C]. STOC'08, Victoria, BC, Canada, ACM, 2008: 197-206. 被引量:1
  • 8Regev O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the A CM, 2009, 56(6): 1-40. 被引量:1
  • 9Peikert C. Public-key cryptosystems from the worst-case shortest vector problem[C]. STOC'09, Maryland, USA, ACM 2009:333 342. 被引量:1
  • 10David C, Dennis H, Eike K, et al. Bonsai trees, or how to delegate a lattice basis [C]. EUROCRYPT'2010, 2010, LNCS, 6110: 523-552. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部