期刊文献+

基于参数L-系统的树木分支模式可视化模拟

VISUAL SIMULATION OF PLANT BRANCHING PATTERN BASED ON PARAMETRIC L-SYSTEM
下载PDF
导出
摘要 对L-系统进行了简要介绍,具体分析了参数L-系统与随机L-系统.根据各自的优缺点笔者采用参数随机相结合的L-系统,对植物的分支模式进行了分析研究.分支是植物重要的生长形式不同种类的植物、同一植物的不同部分,具有不同的分支模式.一般的研究都是基于两个分支的植物进行的,然而现实中的植物并非只有两个分支,针对这一点再结合合轴模式的特点与达芬奇定律构造了随机参数L-系统来表达植物的分支模式,从而生成的图形更贴近自然,在可视化模拟过程中,增加了旋转函数,可以对生成的图形进行旋转,从而可以清晰地看到图形的各个分支. We introduce L-system briefly,analyze the parametric L-system and stochastic L-system in detail according to their advantages and disadvantages.We study the plant branching pattern that is the important growing way of plant.The different species and different parts of the same plant have the different branching patterns.Generally,most studies are based on two branches,however,the natural plant has not only two branches.According to this and the features of sympodial pattern and combing with Da Vinci' s law,we construct a stochastic and parametric L-system to express plant branching Pattern.In the visualization process,we increase the rotate function to rotate the generating graphics with mouse.Then we can clearly see the various branches of graphics.
出处 《山东师范大学学报(自然科学版)》 CAS 2013年第4期33-36,共4页 Journal of Shandong Normal University(Natural Science)
关键词 L-系统 植物 分支模式 三维效果 L - system plant branching pattern three - dimensional effect
  • 相关文献

参考文献6

二级参考文献27

  • 1Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants[M]. New York, USA: Spinger-Verlog, 1990. 被引量:1
  • 2[2]MANDELBROT B.The Fractal Geometry of Nature[M].New York:Freeman,1982. 被引量:1
  • 3[3]CARLSON PW.Two artistic orbit trap rendering methods for Newton M-set fractals[J].Computers and Graphics,1999,23(6):925-931. 被引量:1
  • 4Falconer K. Fractal geometry: mathematical foundations and applications[M]. New York: John Wiley & Sons, 1990. 被引量:1
  • 5Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants[M]. New York: Springer-Verlag, 1990. 被引量:1
  • 6Prusinkiewicz P. Modeling plant growth and development[J]. Current Opinion in Plant Biology, 2004,7 (1) : 79. 被引量:1
  • 7Aono M, Kunii T L. Botanical tree image generation[J]. IEEE Computer Graphic Application, 1984,4(5) : 10. 被引量:1
  • 8Weber J, Penn J. Creation and rendering of realistic trees[C]// Proceedings of SIGGRAPH '95. Los Angeles:ACM SIGGRAPH, 1995:119 - 128. 被引量:1
  • 9Jirasek C A. A biomechanical model of branch shape in plants expressed using L-systems [ D]. Calgary: University of Calgary, 2000. 被引量:1
  • 10Simith A R. Plants, fractals, and formal languages[J]. Computer Graphics, 1984,18(3) : 1. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部