期刊文献+

基于多元时滞序列驱动的复杂过程故障预测方法应用研究 被引量:11

A complex process fault prognosis approach based on multivariate delayed sequences
下载PDF
导出
摘要 复杂过程故障预测是保证过程安全可靠运行的关键,而复杂系统的工作状态往往由多元时滞序列决定,该序列含有变量间的时滞信息及相关关系,具有一定的信息完备性。因此文章提出一种基于多元时滞序列驱动的复杂过程故障预测方法,该方法首先构建复杂系统的时滞符号有向图(TD-SDG)进而得到多元时滞序列,然后针对复杂系统变量多、关系复杂的问题,提出一种独立成分分析(ICA)和ELM神经网络集成的方法,此方法可快速获取多元时滞序列的独立成分从而建立监控统计量,最终达到故障预测的目的。通过在Tennessee Eastman(TE)过程上的仿真实验验证,表明所提方法能够至少提前15min预测到故障,方便工作人员及时有效地采取措施。 Complex process fault prognosis is a key scientific issue that ensures the security of the process and reliable operation, however complex systems work state is often determined by multivariate delayed sequence. It contains the relationship between the variables and the time delay information, so it has information completeness. So a complex process fault prognosis approach based on multivariate delayed sequences is proposed. First this method construct the Time Delay Signed Direct Digraph (TD-SDG) to get multi-delayed sequence, then combine Independent Component Analysis and ELM neural network to get the independent component of the multi-delayed sequence, and finally realize the purpose of fault prognosis of complex system. The simulation results on Tennessee Eastman process illustrate that the proposed method can predict fault earlier 15 min, increase operator's reaction time and detect the fault.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第12期4290-4295,共6页 CIESC Journal
基金 国家自然科学基金项目(61104131)~~
关键词 故障预测 时滞 独立成分分析 ELM TE过程 fault prognosis time delay independent component analysis ELM TE process
  • 相关文献

参考文献20

  • 1周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:308
  • 2郭阳明,蔡小斌,张宝珍,翟正军.故障预测与健康状态管理技术综述[J].计算机测量与控制,2008,16(9):1213-1216. 被引量:49
  • 3陆宁云,王磊,姜斌.基于时延SDG和ICA的多工况过程故障预测方法[J].控制工程,2011,18(4):632-635. 被引量:8
  • 4Seung-hyun Jin, Peter Lin, Mark Hallett.Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction[J].Clinical Neurophysiology, 2010, 121:392-401. 被引量:1
  • 5Mondi S, Kharitonov V L.Exponential estimates for retarded time-delay systems:an LMI approach[J].IEEE Transactions on Automatic Control, 2005, 50:268-273. 被引量:1
  • 6Ren X, Rad A, Chan P, Lo W.Online identification of continuous-time systems with unknown time delay[J].IEEE Transactions on Automatic Control, 2005, 50:1418-1422. 被引量:1
  • 7Wang Huiwei, Song Qiankun.State estimation for neural networks with mixed interval time-varying delays[J].Neurocomputing, 2010, 73:1281-1288. 被引量:1
  • 8Ni Boyi, Xiao Deyun, Sirish L Shah. Time delay estimation for MIMO dynamical systems with time-frequency domain analysis[J].Journal of Process Control, 2010, 20:83-94. 被引量:1
  • 9Samir Shaltaf.Neuro-fuzzy based time-delay estimation using DCT coefficients[J].ISA Transactions, 2007, 46:21-30. 被引量:1
  • 10Lu N Y, Wang L, Jiang B, et al.Fault prognosis for process industry based on information synchronization//Proceedings of IFAC Word Congress[C].Milan, 2011. 被引量:1

二级参考文献220

共引文献417

同被引文献211

引证文献11

二级引证文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部