摘要
作为一种新型清洁能源,海上风力发电受到人们的广泛关注,近十年发展迅猛.海上风电结构既不同于陆上风电结构,也区别于传统的海洋平台,既要考虑风对风机、塔架的作用,也要考虑波、浪、流、冰对水下支撑结构和地基的作用,还要考虑高倾覆力矩作用下地基的变形和承载力.然而,与之相关的水动力学、土力学、结构动力学及流-固-土耦合力学等的现有理论,还远不能满足工程设计和建设的需求,亟待发展.本文在阐述海上风电工程发展现状、结构形式与特征的基础上,重点阐述有关海上风电结构(包括固定式和浮式)的耦合水动力载荷与响应、地基的动力响应与承载特性的研究发展趋势,从水动力学、土力学和结构动力学的角度,凝练其中亟待开展深入研究的关键科学问题,包括:近海复杂海洋环境条件、海上风机系统的耦合水动力载荷、支撑结构和地基的动力响应等,并据此提出近期研究的发展方向,为从事海上风电工程研究和建设的科技人员提供参考.
Offshore wind energy, as an environmentally friendly and clean energy source, has been drawing more and more attention and seeing its marvelous development in the last decade. The development of technology for offshore wind energy exploitation has so far principally relied on the very extensive base of foundational knowledge used for onshore wind energy, other offshore applications and power management. Nevertheless, this knowledge base is far less complete for offshore wind power engineering design, because complicated environmental loads from extreme winds, waves, currents, ice, etc. and their coupling with structure responses make offshore wind power system very much different in structure from onshore wind turbines and traditional marine oil/gas platforms. It is essentially urgent to deepen understanding of the hydrodynamics and fluid-structure-foundation interactions involved in offshore wind power engineering. The present paper aims to delineate the state of the art of offshore wind power engineering, characteristics of offshore wind turbine system, and, most importantly, to deduce new research trends of some significant topics in areas of hydrodynamics, soil mechanics and structural dynamics, such as extreme ocean environments, coupling hydrodynamic loads, structure responses, and fluid-structure-foundation interactions. It will serve as a good reference to researchers and engineers engaged in offshore wind power engineering.
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2013年第12期1589-1601,共13页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金资助项目(批准号:11232012
11172307)
关键词
海上风电
极端海洋环境
水动力载荷
流固土耦合
offshore wind turbine, extreme ocean environment, hydrodynamic load, fluid-structure-foundation interaction