期刊文献+

PPI网络聚类的评价方法的研究与应用 被引量:2

Study and Application of Evaluating Methods of PPI Network Clustering
下载PDF
导出
摘要 蛋白质相互作用网络(Protein-Protein Interaction,PPI)聚类结果的评价方法的研究是检测PPI网络功能模块聚类结果正确与否的关键。介绍并分析了4种有代表性的PPI网络聚类的评价方法,即p-value、匹配统计量、基于准确率和查全率的综合评价以及基于层结构的hF-measure,在此基础上考虑了主错误划分类与该预测类的相似性,提出了新的罚分函数和新的Sf-measure评价方法。仿真结果表明了各评价方法的特点及Sf-measure评价方法的有效性及合理性。 The research in evaluating clustering results for PPI (Protein-Protein Interaction) network is the key to de- tect clustering results of function module in PPI network. The four typical methods evaluating clusters of PPI (protein- protein interaction) network were introduced and analyzed in this paper,which are p-value, matching statistics, f-meas- ure based on recall and precision and hF-measure based on hierarchical structure. Besides, considering the similarity be- tween the main error classification and the cluster predicted, a new penalty function and the new Sf-measure evaluation method were put forward lately. The simulation results show the features of various evaluation methods and the ration- ality and effectivity of Sf-measure method.
出处 《计算机科学》 CSCD 北大核心 2013年第12期254-258,共5页 Computer Science
基金 国家自然科学基金青年基金(61100164 61173190) 教育部留学回国人员科研启动基金(教外司留[2012]1707号) 陕西省2010年自然科学基础研究计划青年基金(2010JQ8034)资助
关键词 蛋白质相互作用网络 评价方法 调和平均值 主错误划分类 Sf-measure Protein-protein interaction(PPI) network, Evaluation method, f-measure, Main error classification, Sf-measure
  • 相关文献

参考文献29

  • 1Barabasi A L, Ohvai Z N. Network biology: understanding the cell's functional organization[J]. Nal. Res. ,2004,5:101-114. 被引量:1
  • 2Von Mering C, Krause R, Sne B, et al. Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions [J]. Na- ture, 2002,417 (6887) : 399-403. 被引量:1
  • 3Bader G D, Hogue C W. An automated method for finding mo- lecular complexes in large protein interaction networks[J]. BMC Bioinformaties, 2003,4 : 2. 被引量:1
  • 4Li X L, Tan S, Foo C, et al. Interaction Graph Mining for Protein Complexes Using Local Clique Merging [J]. Genome Informa- tics, 2005,16(2) : 260-269. 被引量:1
  • 5Altaf-UI-Amin M, Shinbo Y, Mihara K, et al. Development and implementation of an algorithm for detection of protein comple- xes in large interaction networks[J]. BMC Bioinformaties, 2006, 7:207. 被引量:1
  • 6Li M,Chen J, et al. Modifying the DPClus Algorithm for Identif- ying Protein Complexes Based on New Topological Structures [J]. BMC Bioinformatics, 2008,9 : 398. 被引量:1
  • 7Li M,Wang J, Chen J, et al. Identifying the Overlapping Com- plexes in Protein Interaction Networks[J]. Int. J. DataMing and Bioinformaties, 2010,4(1) : 91-108. 被引量:1
  • 8King A D,Przulj N,Jurisieal I. Protein eomplexes prediction via cost-based clustering [J]. Bioinformaties, 2004, 20 ( 17 ) : 3013- 3020. 被引量:1
  • 9Ruan J H, Zhang W X. An efficient spectral algorithm for net- work community discovery and its applications to biological and social network[C]//Pemer P, ed. Proceedings of the 7th IEEE International Conference on Data Mining. 2007,72 : 643-648. 被引量:1
  • 10Luo F, Yang Y, Chen C F, et al. Modular organization of protein interaction networks[J]. Bioinformatics, 2007,23 (2) : 207-214. 被引量:1

二级参考文献3

共引文献14

同被引文献30

  • 1岑涌,罗林开.一种改善非平衡分布数据SVM分类能力的新策略[J].计算机与数字工程,2006,34(11):103-105. 被引量:3
  • 2Von Mering C, K rause R, Snel B, et al. Comparative assessmentof large-scale data sets of protein-protein interactions [J]. Na- ture, 2002,417:399-403. 被引量:1
  • 3Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks [J]. Nature, 1998,339 : 440-442. 被引量:1
  • 4Barabasi A L, Oltvai Z N. Network biology: understanding the cell's functional organization [J]. Nature Review Genetics, 2004,5(2) : 101-103. 被引量:1
  • 5MacQueen J. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berke- ley, University of California Press, 1967 : 281-297. 被引量:1
  • 6Guo Hai-xiang, Zhu Ke-Jun,Gao Si-wei, et al. An improved ge- netic K-means algorithm for optimal clustering [C]//Procee- dings of 6th IEEE International Conference on Data Mining Workshops. Washington DC: IEEE Computer Society, 2006: 793-797. 被引量:1
  • 7Zhang T, Ramakrishnan R, Livny M. An efficient data clustering method for very large databases [C] // Proceeding ACM SIG- MOD Conference on Management of Data. Montreal, Canada, 1996:103-114. 被引量:1
  • 8Ester M,Kriegel H P,Sander J, et al. A density-based algorithm for discovering clusters in Large Spatial Databases with Noise [C] // Proceedings of 2nd International Conference on Know- ledge Discovery and Data Mining (KDD' 96 ). Portland, OR, 1996:226-231. 被引量:1
  • 9Ben-Hur A, Horn D, Siegelmann T H, et al. Support vector clustering [J]. Journal of Machine Learning Research, 2002,2: 125-137. 被引量:1
  • 10Tipping M E. The Relevance Vector Machine [M]//Advances in Neural Information Processing Systems 12. 2000:652-658. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部