期刊文献+

驯化期外电路对微生物燃料电池的影响 被引量:4

Effect of external circuits on microbial fuel cell during acclimated period
原文传递
导出
摘要 为了研究驯化期外电路对微生物燃料电池(MFC)的影响,对比了驯化期外电路分别为短路、连接1kΩ电阻、连接5kΩ电阻和开路的MFC在驯化时间、产电性能、阳极微生物等方面的差异.结果表明:驯化期外电路开路连接时驯化时间长且产电性能差;驯化期连接电阻可缩短MFC驯化时间,外电路电阻阻值越高,阳极微生物的含量越高,但产电微生物的富集越差,阳极微生物的电化学活性越低;增加驯化期外电路电阻,MFC内阻和电动势均降低,驯化期外电路阻值对MFC最大输出功率密度和库仑效率的影响较小. To investigate the effect of external circuits during acclimation period on a microbial fuel cell (MFC), MFC reactors connected with a short-cut circuit, 1 kg resistance, 5 kg resistance and open circuit respectively during the acclimation period were operated and their acclimation time, elec- trical performance and anodic bacteria were compared. Results show that MFC connected with open circuit needs the longest time for acclimation and its electrical performance is the worst. The acclima- tion time could be cut down significantly by connecting with an external resistance. The higher the ex- ternal resistance is, the more the anodic bacteria are. However, the enrichment of electricigens is worse and the electrochemical activity of the anodie bacteria is poorer. Connected with a higher exter- nal resistance during the acclimation period, the internal resistance and the electromotive force of the MFC would be lower, and the maximum power density and the coulomb efficiency are affected mini- mally.
作者 李辉 方正
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期32-36,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中国博士后科学基金资助项目(2012M511262) 中央高校基本科研业务费专项资金资助项目(121035)
关键词 微生物燃料电池 驯化期 外电阻 阳极微生物 产电性能 microbial fuel cell (MFC)~ acclimated period~ external resistance~ anodic bacteria~ elec-trical performance
  • 相关文献

参考文献16

  • 1Du Zhuwei,Li Haoran, Gu Tingyue. A state of theart review on microbial fuel cells: a promising tech-nology for wastewater treatment and bioenergy[J].Biotechnology Advances, 2007,25(5) : 464-482. 被引量:1
  • 2You S J, Zhao Q L,Jiang J Q, et al. Treatment ofdomestic wastewater with simultaneous electricitygeneration in microbial fuel cell under continuous op-eration[J]. Chemical and Biochemical EngineeringQuarterly, 2006 , 20(4) : 407-412. 被引量:1
  • 3Min B,Kim J R,Oh S E,et al. Electricity genera-tion from swine wastewater using microbial fuel cells[J]. Water Research,2005 , 39(20) : 4961*4968. 被引量:1
  • 4Feng Yujie,Wang Xin, Logan B E,et al. Brewerywastewater treatment using air-cathode microbial fuelcells [J]. Applied Microbiology and Biotechnology,2008, 78(5): 873-880. 被引量:1
  • 5Lu Na,Zhou Shungui,Zhuang Li, et al. Electricitygeneration from starch processing wastewater usingmicrobial fuel cell technology[J]. Biochemical Engi-neering Journal, 2009, 43(3) : 246-251. 被引量:1
  • 6Cheng Jia,Zhu Xiuping, Ni Jinren, et al. Palm oilmill effluent treatment using a two-stage microbial fu-el cells system integrated with immobilized biologicalaerated filters [J]. Bioresource Technology, 2010,101(8): 2729-2734. 被引量:1
  • 7Li Hui,Ni Jinren. Treatment of wastewater from Di-oscorea Zingiberensis tubers used for producing ster-oid hormones in a microbial fuel cell[J]. BioresourceTechnology, 2011,102: 2731-2735. 被引量:1
  • 8Schroder U. Anodic electron transfer mechanisms inmicrobial fuel cells and their energy efficiency [ J ].Physical Chemistry Chemical Physics, 2007,9(21):2619-2629. 被引量:1
  • 9Liu J L, Lowy D A, Baumann R G,et al. Influenceof anode pretreatment on its microbial colonization[J]. Journal of Applied Microbiology, 2007,102(1): 177-183. 被引量:1
  • 10Chae K J,Choi M J,Lee J W, et al. Effect of dif-ferent substrates on the performance,bacterial di-versity, and bacterial viability in microbial fuel cells[J ]. Bioresource Technology,2009,100 (14):3518-3525. 被引量:1

二级参考文献18

  • 1Cortright RD,Davda RR,Dumesic JA.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.Nature,2002,418:964-967 被引量:1
  • 2Sheehan J,Himmel M.Enzymes,energy,and environment:a strategic perspective on the U.S.Department of Energy' s research and development activities for bioethanol.Biotechnol Prog,1999,15:817-827 被引量:1
  • 3Holmes DE,Bond DR,Lovley DR.Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes.Appl Environ Microbiol,2004,70(2):1234-1237 被引量:1
  • 4Holmes DE,Bond DR,O' Neil RA.Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microbial Ecol,2004,48:178-190 被引量:1
  • 5Hong L,Shao AC,Brucee L.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environ Sci Technol,2005,39:658-662 被引量:1
  • 6Lovley DR,Holmes DE,Nevin KP.Dissimilatory Fe(Ⅲ) and Mn (Ⅳ) Reduction.Advances in Microbial Physiology,2004,49:219-286 被引量:1
  • 7Lovley DR.Dissimilatory metal reduction:from early life to bioremediation.ASM News,2002,68:231-237 被引量:1
  • 8Blunt-Harris EL,Lovley DR,Vargas M et al.Microbiological evidence for Fe(Ⅲ) reduction on early earth.Nature,1998,395:65-67 被引量:1
  • 9Anderson RT,Vrionis HA,Ortiz-Bernad I et al.Stimulating the in situ activity of Geobacter species to remove Uranium from the groundwater of a Uranium contaminated aquifer.Appl Environ Microbiol,2003,69(10):5884-5891 被引量:1
  • 10Lovley DR.Bioremediation of organic and metal contaminants with dissimilatory metal reduction.J lndustr Microbiol,1995,114:85-93 被引量:1

共引文献26

同被引文献34

  • 1梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 2Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [ J]. Science, 2012, 337 (6095): 686-690. 被引量:1
  • 3Rabaey K, Rodrlguez J, Blackall L L, et al. Microbial ecology meets electrochemistry : electricity-driven and driving communities[J]. The ISME Journal, 2007, 1(1) : 9-18. 被引量:1
  • 4Chen S L, He G H, Hu X W, et al. A Three-dimensionally ordered macroporous carbon derived From a natural resource as anode for microbial bioelectrochemical systems [ J ]. Chemsuschem, 2012, 5 (6) : 1059-1063. 被引量:1
  • 5Chen S L, He G H, Liu Q, et al. Layered corrugated electrode macmstructures boost microbial bioelectrocatalysis[ J]. Energy & Environmental Science, 2012, 5 ( 12 ) : 9769-9772. 被引量:1
  • 6Chen S L, Liu Q, He G H, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[ J]. Journal of Materials Chemistry, 2012, 22(35) : 18609-18613. 被引量:1
  • 7Sun Y M, Wei J C, Liang P, et aL Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials [ J ]. Bioresource Technology, 2011, 102(23) : 10886-10891. 被引量:1
  • 8Ansorge W J. Next-generation DNA sequencing techniques [ J ]. New Biotechnology, 2009, 25 (4) : 195-203. 被引量:1
  • 9Wang Z J, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbal fuel cells[ J]. Bioresource Technology, 2013, 144: 74-79. 被引量:1
  • 10Tedersoo N, Nilsson R H, Abarenkov K, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases[ J]. New Phytologist, 2010, 188( 1 ) : 291-301. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部